Publication

Compressible distributions for high-dimensional statistics

Volkan Cevher, Rémi Gribonval
2012
Journal paper
Abstract

We develop a principled way of identifying probability distributions whose independent and identically distributed realizations are compressible, i.e., can be well approximated as sparse. We focus on Gaussian compressed sensing, an example of underdetermined linear regression, where compressibility is known to ensure the success of estimators exploiting sparse regularization. We prove that many distributions revolving around maximum a posteriori (MAP) interpretation of sparse regularized estimators are in fact incompressible, in the limit of large problem sizes. We especially highlight the Laplace distribution and \ell 1 regularized estimators such as the Lasso and basis pursuit denoising. We rigorously disprove the myth that the success of \ell 1 minimization for compressed sensing image reconstruction is a simple corollary of a Laplace model of images combined with Bayesian MAP estimation, and show that in fact quite the reverse is true. To establish this result, we identify nontrivial undersampling regions where the simple least-squares solution almost surely outperforms an oracle sparse solution, when the data are generated from the Laplace distribution. We also provide simple rules of thumb to characterize classes of compressible and incompressible distributions based on their second and fourth moments. Generalized Gaussian and generalized Pareto distributions serve as running examples. © 1963-2012 IEEE.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.