Forest ecologyForest ecology is the scientific study of the interrelated patterns, processes, flora, fauna and ecosystems in forests. The management of forests is known as forestry, silviculture, and forest management. A forest ecosystem is a natural woodland unit consisting of all plants, animals, and micro-organisms (Biotic components) in that area functioning together with all of the non-living physical (abiotic) factors of the environment. Forests have an enormously important role to play in the global ecosystem.
Cost-effectiveness analysisCost-effectiveness analysis (CEA) is a form of economic analysis that compares the relative costs and outcomes (effects) of different courses of action. Cost-effectiveness analysis is distinct from cost–benefit analysis, which assigns a monetary value to the measure of effect. Cost-effectiveness analysis is often used in the field of health services, where it may be inappropriate to monetize health effect.
Simulation hypothesisThe simulation hypothesis proposes that all of existence is a simulated reality, such as a computer simulation. This simulation could contain conscious minds that may or may not know that they live inside a simulation. This is quite different from the current, technologically achievable concept of virtual reality, which is easily distinguished from the experience of actuality. Simulated reality, by contrast, would be hard or impossible to separate from "true" reality.
Cost–utility analysisCost–utility analysis (CUA) is a form of economic analysis used to guide procurement decisions. The most common and well-known application of this analysis is in pharmacoeconomics, especially health technology assessment (HTA). In health economics, the purpose of CUA is to estimate the ratio between the cost of a health-related intervention and the benefit it produces in terms of the number of years lived in full health by the beneficiaries. Hence it can be considered a special case of cost-effectiveness analysis, and the two terms are often used interchangeably.
Agent-based modelAn agent-based model (ABM) is a computational model for simulating the actions and interactions of autonomous agents (both individual or collective entities such as organizations or groups) in order to understand the behavior of a system and what governs its outcomes. It combines elements of game theory, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming. Monte Carlo methods are used to understand the stochasticity of these models.