Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The complex mechanics of porous and granular media play a significant role in various industrial processes and natural phenomena. As an example, understanding the mechanics of how failure occurs, localizes and propagates in porous brittle solids under vari ...
The principle of tailoring material properties to improve the mechanical behaviour of soils through compaction or cement grouting dates to the 60s. The increasing trends of urbanization worldwide require new solutions for the development of resilient and s ...
We study the flow past a permeable sphere modeled using homogenization theory. The flow through the porous medium is described by the Darcy law, in which the permeability quantifies the resistance for the fluid to pass through the microstructure. A slip co ...
Hypothesis: The dynamics of colloidal suspension confined within porous materials strongly differs from that in the bulk. In particular, within porous materials, the presence of boundaries with complex shapes entangles the longitudinal and transverse degre ...
Microbial life in porous systems dominates the functioning of numerous ecosystems, ranging from stream sediments to soils. While these environments are characterized by structures that vary spatially over orders of magnitude, the traditional research focus ...
Water-induced strength reduction is one of the most critical causes of rock engineering disasters. Understanding the influence of water on the fracture toughness of rocks is necessary for rock fracture mechanics and rock engineering applications such as mi ...
Characterizing the nucleation of anticracks in porous materials under compression is a great challenge and has been the subject of several investigationsin different fields, from earthquake science, rock mechanics to avalanche research[1]. Yet, the conditi ...
Porous brittle solids have the ability to collapse and fail even under compressive stresses. In fracture mechanics, this singular behavior, often referred to as anticrack, demands for appropriate continuum models to predict the catastrophic failure. To ide ...
A reduced basis Darcy-Stokes finite element heterogeneous multiscale method (RB-DS-FE-HMM) is proposed for the Stokes problem in porous media. The multiscale method is based on the Darcy-Stokes finite element heterogeneous multiscale method (DS-FE-HMM) int ...
We present a new conservative multiscale method for Stokes flow in heterogeneous porous media. The method couples a discontinuous Galerkin finite element method (DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation with a Stokes ...