Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Hypothesis: The dynamics of colloidal suspension confined within porous materials strongly differs from that in the bulk. In particular, within porous materials, the presence of boundaries with complex shapes entangles the longitudinal and transverse degrees of freedom inducing a coupling between the transport of the suspension and the density inhomogeneities induced by the walls. Method: Colloidal suspension confined within model porous media are characterized by means of active microrheology where a net force is applied on a single colloid (tracer particle) whose transport properties are then studied. The trajectories provided by active microrheology are exploited to determine the local transport coefficients. In order to asses the role of the colloid-colloid interactions we compare the case of a tracer embedded in a colloidal suspension to the case of a tracer suspended in an ideal bath. Finding: Our results show that the friction coefficient increases and the passage time distribution widens upon increasing the corrugation of the channel. These features are obtained for a tracer suspended in a (thermalized) colloidal bath as well as for the case of an ideal thermal bath. These results highlight the relevance of the confinement on the transport and show a mild dependence on the colloidal/thermal bath. Finally, we rationalize our numerical results with a semi-analytical model. Interestingly, the predictions of the model are quantitatively reliable for mild external forces, hence providing a reliable tool for predicting the transport across porous materials. (c) 2021 Elsevier Inc. All rights reserved.
Tom Ian Battin, Hannes Markus Peter, Filippo Miele, David Scheidweiler