**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Posterior Features for Template-based ASR

Abstract

This paper investigates the use of phoneme class conditional probabilities as features (posterior features) for template-based ASR. Using 75 words and 600 words task-independent and speaker-independent setup on Phonebook database, we investigate the use of different posterior distribution estimators, different distance measures that are better suited for posterior distributions, and different training data. The reported experiments clearly demonstrate that posterior features are always superior, and generalize better than other classical acoustic features (at the cost of training a posterior distribution estimator).

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (2)

Related publications (33)

Related concepts (20)

Advanced statistical physics

We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Advanced statistical physics

We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Bayes estimator

In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .

Geometric distribution

In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions: The probability distribution of the number X of Bernoulli trials needed to get one success, supported on the set ; The probability distribution of the number Y = X − 1 of failures before the first success, supported on the set . Which of these is called the geometric distribution is a matter of convention and convenience. These two different geometric distributions should not be confused with each other.

Invariant estimator

In statistics, the concept of being an invariant estimator is a criterion that can be used to compare the properties of different estimators for the same quantity. It is a way of formalising the idea that an estimator should have certain intuitively appealing qualities. Strictly speaking, "invariant" would mean that the estimates themselves are unchanged when both the measurements and the parameters are transformed in a compatible way, but the meaning has been extended to allow the estimates to change in appropriate ways with such transformations.

Deep neural networks have been empirically successful in a variety of tasks, however their theoretical understanding is still poor. In particular, modern deep neural networks have many more parameters than training data. Thus, in principle they should over ...

Michael Christoph Gastpar, Marco Bondaschi

Inspired by Sibson’s alpha-mutual information, we introduce a new parametric class of universal predictors. This class interpolates two well-known predictors, the mixture estimator, that includes the Laplace and the Krichevsky-Trofimov predictors, and the ...

2022Annalisa Buffa, Denise Grappein, Rafael Vazquez Hernandez, Ondine Gabrielle Chanon

An a posteriori error estimator based on an equilibrated flux reconstruction is proposed for defeaturing problems in the context of finite element discretizations. Defeaturing consists in the simplification of a geometry by removing features that are consi ...

2023