Building (mathematics)In mathematics, a building (also Tits building, named after Jacques Tits) is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. Buildings were initially introduced by Jacques Tits as a means to understand the structure of exceptional groups of Lie type. The more specialized theory of Bruhat–Tits buildings (named also after François Bruhat) plays a role in the study of p-adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups.
HyperplaneIn geometry, a hyperplane is a subspace whose dimension is one less than that of its ambient space. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined. In different settings, hyperplanes may have different properties.
Affine plane (incidence geometry)In geometry, an affine plane is a system of points and lines that satisfy the following axioms: Any two distinct points lie on a unique line. Given any line and any point not on that line there is a unique line which contains the point and does not meet the given line. (Playfair's axiom) There exist three non-collinear points (points not on a single line). In an affine plane, two lines are called parallel if they are equal or disjoint.
Distance geometryDistance geometry is the branch of mathematics concerned with characterizing and studying sets of points based only on given values of the distances between pairs of points. More abstractly, it is the study of semimetric spaces and the isometric transformations between them. In this view, it can be considered as a subject within general topology. Historically, the first result in distance geometry is Heron's formula in 1st century AD.
Stiefel manifoldIn mathematics, the Stiefel manifold is the set of all orthonormal k-frames in That is, it is the set of ordered orthonormal k-tuples of vectors in It is named after Swiss mathematician Eduard Stiefel. Likewise one can define the complex Stiefel manifold of orthonormal k-frames in and the quaternionic Stiefel manifold of orthonormal k-frames in . More generally, the construction applies to any real, complex, or quaternionic inner product space.
Pushforward (differential)In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that is a smooth map between smooth manifolds; then the differential of at a point , denoted , is, in some sense, the best linear approximation of near . It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of at to the tangent space of at , . Hence it can be used to push tangent vectors on forward to tangent vectors on .