Immeuble de Bruhat-TitsEn mathématiques, un immeuble, aussi appelé l’immeuble Tits et l’immeuble Bruhat-Tits (nommé d'après François Bruhat et Jacques Tits) est une structure combinatoire et géométrique qui généralise simultanément certains aspects des variétés de drapeaux, des plans projectifs finis et des espaces riemanniens symétriques. Introduite par Jacques Tits comme moyen de comprendre la structure des groupes exceptionnels de type de Lie, la théorie a également été utilisée pour l'étude de la géométrie et de la topologie des espaces homogènes des groupes de Lie p-adiques et leurs sous-groupes de symétrie discrets, de la même manière que les arbres ont été utilisés pour étudier les groupes libres.
HyperplanEn mathématiques et plus particulièrement en algèbre linéaire et géométrie, les hyperplans d'un espace vectoriel E de dimension quelconque sont la généralisation des plans vectoriels d'un espace de dimension 3 : ce sont les sous-espaces vectoriels de codimension 1 dans E. Si E est de dimension finie n non nulle, ses hyperplans sont donc ses sous-espaces de dimension n – 1 : par exemple l'espace nul dans une droite vectorielle, une droite vectorielle dans un plan vectoriel Soient E un espace vectoriel et H un sous-espace.
Plan affine (structure d'incidence)Dans une approche axiomatique de la géométrie, il est possible de définir le plan comme une structure d'incidence, c'est-à-dire la donnée d'objets primitifs, les points et les droites (qui sont certains ensembles de ces points) et d'une relation, dite d'incidence, entre point et droite (qui est la relation d'appartenance du point à la droite).
Distance geometryDistance geometry is the branch of mathematics concerned with characterizing and studying sets of points based only on given values of the distances between pairs of points. More abstractly, it is the study of semimetric spaces and the isometric transformations between them. In this view, it can be considered as a subject within general topology. Historically, the first result in distance geometry is Heron's formula in 1st century AD.
Variété de StiefelEn mathématiques, les différentes variétés de Stiefel sont les espaces obtenus en considérant comme des points l'ensemble des familles orthonormales de k vecteurs de l'espace euclidien de dimension n. Ils possèdent une structure naturelle de variété ce qui permet de donner leurs propriétés au plan de la topologie globale, de la géométrie ou des aspects algébriques. Ce sont des exemples d'espace homogène sous l'action des groupes classiques de la géométrie.
Pushforward (differential)In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that is a smooth map between smooth manifolds; then the differential of at a point , denoted , is, in some sense, the best linear approximation of near . It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of at to the tangent space of at , . Hence it can be used to push tangent vectors on forward to tangent vectors on .