Compressed classification of observation sets with linear subspace embeddings
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Effective representation methods and proper signal priors are crucial in most signal processing applications. In this thesis we focus on different structured models and we design appropriate schemes that allow the discovery of low dimensional latent struct ...
In this paper we propose a novel dimensionality reduction method that is based on successive Laplacian SVM projections in orthogonal deflated subspaces. The proposed method, called Laplacian Support Vector Analysis, produces projection vectors, which captu ...
In this paper, a method for semi-supervised multiview feature extraction based on the multiset regularized kernel canonical correlation analysis (kCCA) is proposed for the classification of hyperspectral images. The covariance matrix of this type of data i ...
With growing concern about process variation in deeply nano-scaled technologies, parameterized device and circuit modeling is becoming very important for design and verification. However, the high dimensionality of parameter space is a serious modeling cha ...
In this work a new method for automatic image classification is proposed. It relies on a compact representation of images using sets of sparse binary features. This work first evaluates the Fast Retina Keypoint binary descriptor and proposes imp ...
Extracting low dimensional structure from high dimensional data arises in many applications such as machine learning, statistical pattern recognition, wireless sensor networks, and data compression. If the data is restricted to a lower dimensional subspace ...
Institute of Electrical and Electronics Engineers2012
In this paper, we present a novel semi-supervised dimensionality reduction technique to address the problems of inefficient learning and costly computation in coping with high-dimensional data. Our method named the dual subspace projections (DSP) embeds hi ...
Principal Component Analysis (PCA) has been widely used for manifold description and dimensionality reduction. Performance of PCA is however hampered when data exhibits nonlinear feature relations. In this work, we propose a new framework for manifold lear ...
Nonlocal means (NLM) is an effective denoising method that applies adaptive averaging based on similarity between neighborhoods in the image. An attractive way to both improve and speed-up NLM is by first performing a linear projection of the neighborhood. ...
When examining complex problems, such as the folding of proteins, coarse grained descriptions of the system drive our investigation and help us to rationalize the results. Oftentimes collective variables (CVs), derived through some chemical intuition about ...