Anisotropic Magnetic Porous Assemblies of Oxide Nanoparticles Interconnected Via Silica Bridges for Catalytic Application
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Photocatalytic applications play an essential role in the search for alternative energy sources and environmental decontamination techniques. It is of fundamental interest to understand on a molecular level the aqueous solid/liquid interface, where photoca ...
Recent advances in the field of nanomaterials demonstrated how their use for vaccination can drastically improve immune responses, mainly by enhancing delivery and uptake of vaccine components. However, our understanding of the connections between presenta ...
The water splitting is an appealing approach to fulfil the demand of energy without any global concerns. The oxygen evolution reaction is one of way to achieve unlimited energy from water but the low stability, high energy required to drive the reaction (o ...
Nanostructured graphitic materials, including graphene hosting Å to nanometer-sized pores, have attracted attention for various applications such as separations, sensors, and energy storage. Graphene with Å-scale pores is a promising next-generation materi ...
Electrochemical CO2 reduction (eCO2RR) towards value-added chemicals, powered by renewable electricity, is a promising technology for storing the intermittent renewable energy in the form of chemical bonds. Among the various products of eCO2RR, multi-carbo ...
A non-trivial interplay rules the relationship between the structure and the chemophysical properties of a nanoparticle. In this context, characterization experiments, molecular dynamics simulations and electronic structure calculations may allow the varia ...
The control of the aggregation of biomedical nanoparticles (NP) in physiological conditions is crucial as clustering may change completely the way they interact with the biological environment. Here we show that Au nanoparticles, functionalized by an anion ...
Single-walled carbon nanotubes (SWCNTs) emit near-infrared (NIR) fluorescence that is ideal for optical sensing. However, the low quantum yields diminish the sensor’s signal-to-noise ratio and limits the penetration depths for in vivo measurements. In this ...
In this study, we report the effects of co-catalysts of Pt nanoparticles and Fe3O4 clusters on photocatalytic behaviors of g-C3N4 (CN) and the use of the resulting photocatalyst for CO2 photoreduction to solar fuels in a flow reactor operated at room-tempe ...
The focus of this short review is directed towards investigations of the dynamics of nanostructured metallic heterogeneous catalysts and the evolution of interfaces during reaction-namely, the metal-gas, metal-liquid, and metal-support interfaces. Indeed, ...