Collisional damping of zonal flows due to finite Larmor radius effects
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Electronic bound states around charged impurities in two-dimensional systems with structural inversion asymmetry can be described in terms of a two-dimensional hydrogen atom in the presence of a Rashba spin-orbit interaction. Here, the energy levels of the ...
The need of durable and abundant energy sources for future ages stimulates the studies of thermonuclear energy sources, based on hot plasma confinement by magnetic fields. The most developed concept of hot plasma trap is the tokamak, where the plasma confi ...
An energy functional given by W = integral integral integral d3x[B2/(2mu0) + p(parallel-to)/(GAMMA - 1)] is proposed as a variational principle to determine three-dimensional (3D) magnetohydrodynamic (MHD) equilibria with anisotropic plasma pressure. It is ...
Radiative transfer is often the dominant energy transport channel in inertial confinement fusion experiments. It is a basic process needed in order to understand the behaviour of astrophysical plasmas, like stellar atmospheres and the inner parts of stars. ...
The thesis analyzes the interaction region of the Large Hadron Collider (LHC). It proposes, studies and compares several upgrade options. The interaction region is the part of the LHC that hosts the particle detectors which analyze the collisions. An upgra ...
The magnetic field of the permanent magnet electron cyclotron resonance (ECR) ion source SWISSCASE located at the University of Bern has been numerically simulated and experimentally investigated. For the first time the magnetized volume qualified for elec ...
The main purpose of the ITER ECH upper launcher is to control magnetohydrodynamic activity, in particular neoclassical tearing modes, in the plasma. The mm-wave optical system is optimized to insure that the eight RF beams are all focused to a small beam w ...
This work aims to investigate, by means of numerical simulation, the evolution of free surface flow in aluminium production cells, and especially the magnetohydrodynamic instabilities. We design a numerical method combining a level-set technique together w ...
The scaling of turbulence-driven heat transport with system size in magnetically confined plasmas is reexamined using first-principles based numerical simulations. Two very different numerical methods are applied to this problem, in order to resolve a long ...
We investigate low-frequency electromagnetic wave propagation and absorption properties in 2D and 3D plasma configurations. For these purposes, we have developed a new full-wave 3D code LEMan that determines a global solution of the wave equation in bounde ...