Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Let p be a prime number, let K be a field of characteristic not p, containing the p-th roots of unity, and let r >= 1 be an integer. We compute the essential dimension of Z/p(r) Z over K (Theorem 4.1). In particular, i) We have edℚ(ℤ/8ℤ)=4, a result which ...
We introduce VSH, very smooth hash, a new S-bit hash function that is provably collision-resistant assuming the hardness of finding nontrivial modular square roots of very smooth numbers modulo an S-bit composite. By very smooth, we mean that the smoothnes ...
Let G be the product of an abelian variety and a torus defined over a number field K. Let P and Q be K-rational points on G. Suppose that for all but finitely many primes p of K the order of (Q mod p) divides the order of (P mod p). Then there exist a K-en ...
We take an approach toward Counting the number of integers n for which the curve (n),: y(2) = x(3) - n(2)x has 2-Selmer groups of a given size. This question was also discussed in a pair of papers by Roger Heath-Brown. In contrast to earlier work, our anal ...
We describe how we reached a new factoring milestone by completing the first special number field sieve factorization of a number having more than 1024 bits, namely the Mersenne number 21039 -1. Although this factorization is orders of magnitude ...
This work is dedicated to developing algebraic methods for channel coding. Its goal is to show that in different contexts, namely single-antenna Rayleigh fading channels, coherent and non-coherent MIMO channels, algebraic techniques can provide useful tool ...
We exhibit central simple algebras over the function field of a diagonal quartic surface over the complex numbers that represent the 2-torsion part of its Brauer group. We investigate whether the 2-primary part of the Brauer group of a diagonal quartic sur ...
The notion of Euclidean minimum of a number field is a classical one. In this paper we generalize it to central division algebras and establish some general results in this new context. ...
This paper reports on the factorization of the 768-bit number RSA-768 by the number field sieve factoring method and discusses some implications for RSA. ...
Springer-Verlag New York, Ms Ingrid Cunningham, 175 Fifth Ave, New York, Ny 10010 Usa2010
The aim of this paper is to give new upper bounds for Euclidean minima of algebraic number fields. In particular, to show that Minkowski's conjecture holds for the maximal totally real subfields of cyclotomic fields of prime power conductor. ...