**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Two variants of the support problem for products of abelian varieties and tori

Abstract

Let G be the product of an abelian variety and a torus defined over a number field K. Let P and Q be K-rational points on G. Suppose that for all but finitely many primes p of K the order of (Q mod p) divides the order of (P mod p). Then there exist a K-endomorphism phi of G and a non-zero integer c such that phi(P) = cQ. Furthermore, we are able to prove the above result with weaker assumptions: instead of comparing the order of the points we only compare the radical of the order (radical support problem) or the l-adic valuation of the order for some fixed rational prime l (l-adic support problem). (C) 2009 Elsevier Inc. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (32)

Related publications (36)

Abelian variety

In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined over that field.

Algebraic number field

In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.

Dual abelian variety

In mathematics, a dual abelian variety can be defined from an abelian variety A, defined over a field K. To an abelian variety A over a field k, one associates a dual abelian variety Av (over the same field), which is the solution to the following moduli problem. A family of degree 0 line bundles parametrized by a k-variety T is defined to be a line bundle L on A×T such that for all , the restriction of L to A×{t} is a degree 0 line bundle, the restriction of L to {0}×T is a trivial line bundle (here 0 is the identity of A).

Maryna Viazovska, Nihar Prakash Gargava, Vlad Serban

We examine the moments of the number of lattice points in a fixed ball of volume $V$ for lattices in Euclidean space which are modules over the ring of integers of a number field $K$. In particular, denoting by $ω_K$ the number of roots of unity in $K$, we ...

In this text, we will show the existence of lattice packings in a family of dimensions by employing division algebras. This construction is a generalization of Venkatesh's lattice packing result Venkatesh (Int Math Res Notices 2013(7): 1628-1642, 2013). In ...

In this thesis we consider the problem of estimating the correlation of Hecke eigenvalues of GL2 automorphic forms with a class of functions of algebraic origin defined over finite fields called trace functions. The class of trace functions is vast and inc ...