Factorization of polynomialsIn mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems. The first polynomial factorization algorithm was published by Theodor von Schubert in 1793. Leopold Kronecker rediscovered Schubert's algorithm in 1882 and extended it to multivariate polynomials and coefficients in an algebraic extension.
Eighth generation of video game consolesThe eighth generation of video game consoles began in 2012, and consists of four home video game consoles: the Wii U released in 2012, the PlayStation 4 family in 2013, the Xbox One family in 2013, and the Nintendo Switch family in 2017. The generation offered few signature hardware innovations. Sony and Microsoft continued to produce new systems with similar designs and capabilities as their predecessors, but with improved performance (processing speed, higher-resolution graphics, and increased storage capacity) that further moved consoles into confluence with personal computers, and furthering support for digital distribution and games as a service.
Single instruction, multiple dataSingle instruction, multiple data (SIMD) is a type of parallel processing in Flynn's taxonomy. SIMD can be internal (part of the hardware design) and it can be directly accessible through an instruction set architecture (ISA), but it should not be confused with an ISA. SIMD describes computers with multiple processing elements that perform the same operation on multiple data points simultaneously. Such machines exploit data level parallelism, but not concurrency: there are simultaneous (parallel) computations, but each unit performs the exact same instruction at any given moment (just with different data).
Digital signal processorA digital signal processor (DSP) is a specialized microprocessor chip, with its architecture optimized for the operational needs of digital signal processing. DSPs are fabricated on MOS integrated circuit chips. They are widely used in audio signal processing, telecommunications, , radar, sonar and speech recognition systems, and in common consumer electronic devices such as mobile phones, disk drives and high-definition television (HDTV) products. The goal of a DSP is usually to measure, filter or compress continuous real-world analog signals.
Gaussian integerIn number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as or Gaussian integers share many properties with integers: they form a Euclidean domain, and have thus a Euclidean division and a Euclidean algorithm; this implies unique factorization and many related properties. However, Gaussian integers do not have a total ordering that respects arithmetic.
Multiply–accumulate operationIn computing, especially digital signal processing, the multiply–accumulate (MAC) or multiply-add (MAD) operation is a common step that computes the product of two numbers and adds that product to an accumulator. The hardware unit that performs the operation is known as a multiplier–accumulator (MAC unit); the operation itself is also often called a MAC or a MAD operation. The MAC operation modifies an accumulator a: When done with floating point numbers, it might be performed with two roundings (typical in many DSPs), or with a single rounding.
Quadratic integerIn number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form x2 + bx + c = 0 with b and c (usual) integers. When algebraic integers are considered, the usual integers are often called rational integers. Common examples of quadratic integers are the square roots of rational integers, such as , and the complex number i = , which generates the Gaussian integers.
Performance appraisalA performance appraisal, also referred to as a performance review, performance evaluation, (career) development discussion, or employee appraisal, sometimes shortened to "PA", is a periodic and systematic process whereby the job performance of an employee is documented and evaluated. This is done after employees are trained about work and settle into their jobs. Performance appraisals are a part of career development and consist of regular reviews of employee performance within organizations.
Quadratic sieveThe quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second fastest method known (after the general number field sieve). It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization algorithm, meaning that its running time depends solely on the size of the integer to be factored, and not on special structure or properties.
Table of costs of operations in elliptic curvesElliptic curve cryptography is a popular form of public key encryption that is based on the mathematical theory of elliptic curves. Points on an elliptic curve can be added and form a group under this addition operation. This article describes the computational costs for this group addition and certain related operations that are used in elliptic curve cryptography algorithms. The next section presents a table of all the time-costs of some of the possible operations in elliptic curves.