In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form
x2 + bx + c = 0
with b and c (usual) integers. When algebraic integers are considered, the usual integers are often called rational integers.
Common examples of quadratic integers are the square roots of rational integers, such as , and the complex number i = , which generates the Gaussian integers. Another common example is the non-real cubic root of unity −1 + /2, which generates the Eisenstein integers.
Quadratic integers occur in the solutions of many Diophantine equations, such as Pell's equations, and other questions related to integral quadratic forms. The study of rings of quadratic integers is basic for many questions of algebraic number theory.
Medieval Indian mathematicians had already discovered a multiplication of quadratic integers of the same D, which allowed them to solve some cases of Pell's equation.
The characterization given in of the quadratic integers was first given by Richard Dedekind in 1871.
A quadratic integer is an algebraic integer of degree two. More explicitly, it is a complex number , which solves an equation of the form x2 + bx + c = 0, with b and c integers. Each quadratic integer that is not an integer is not rational—namely, it's a real irrational number if b2 − 4c > 0 and non-real if b2 − 4c < 0—and lies in a uniquely determined quadratic field , the extension of generated by the square root of the unique square-free integer D that satisfies b2 − 4c = De2 for some integer e. If D is positive, the quadratic integer is real. If D < 0, it is imaginary (that is, complex and non-real).
The quadratic integers (including the ordinary integers) that belong to a quadratic field form an integral domain called the ring of integers of
Although the quadratic integers belonging to a given quadratic field form a ring, the set of all quadratic integers is not a ring because it is not closed under addition or multiplication.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
In algebraic number theory, a fundamental unit is a generator (modulo the roots of unity) for the unit group of the ring of integers of a number field, when that group has rank 1 (i.e. when the unit group modulo its torsion subgroup is infinite cyclic). Dirichlet's unit theorem shows that the unit group has rank 1 exactly when the number field is a real quadratic field, a complex cubic field, or a totally imaginary quartic field. When the unit group has rank ≥ 1, a basis of it modulo its torsion is called a fundamental system of units.
In field theory, a branch of mathematics, the minimal polynomial of an element α of a field extension is, roughly speaking, the polynomial of lowest degree having coefficients in the field, such that α is a root of the polynomial. If the minimal polynomial of α exists, it is unique. The coefficient of the highest-degree term in the polynomial is required to be 1. More formally, a minimal polynomial is defined relative to a field extension E/F and an element of the extension field E/F.
We examine the moments of the number of lattice points in a fixed ball of volume V for lattices in Euclidean space which are modules over the ring of integers of a number field K. In particular, denoting by ωK the number of roots of unity in K, we ...
We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...
By juxtaposing ideas from fractal geometry and dynamical systems, Furstenberg proposed a series of conjectures in the late 1960's that explore the relationship between digit expansions with respect to multiplicatively independent bases. In this work, we in ...