Numerical modeling and neural networks to identify model parameters from piezocone tests: II. Multi-parameter identification from piezocone data
Related publications (38)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Learning to embed data into a space where similar points are together and dissimilar points are far apart is a challenging machine learning problem. In this dissertation we study two learning scenarios that arise in the context of learning embeddings and o ...
In a recent paper [Ray and Hesthaven, J. Comput. Phys. 367 (2018), pp 166-191], we proposed a new type of troubled-cell indicator to detect discontinuities in the numerical solutions of one-dimensional conservation laws. This was achieved by suitably train ...
This study presents a numerical approach designed for material parameter identification for the coupled hydro-mechanical boundary value problem (BVP) of the piezocone test (CPTU) in normally and lightly overconsolidated clayey soils. The study is presented ...
This study proposes a new advanced algorithm for determining material parameters based on in situ tests. In situ testing gives an opportunity to perform soil characterization in natural stress conditions on a representative soil mass. Most field techniques ...
Due to the unfavorable scaling of tensor-network methods with the refinement parameter M, new approaches are necessary to improve the efficiency of numerical simulations based on such states, in particular for gapless, strongly entangled systems. In one-di ...
Learning to embed data into a space where similar points are together and dissimilar points are far apart is a challenging machine learning problem. In this dissertation we study two learning scenarios that arise in the context of learning embeddings and o ...
A two-level procedure designed for the estimation of constitutive model parameters is presented in this paper. The neural network (NN) approach at the first level is applied to achieve the first approximation of parameters. This technique is used to avoid ...
Principal Component Analysis (PCA) has been widely used for manifold description and dimensionality reduction. Performance of PCA is however hampered when data exhibits nonlinear feature relations. In this work, we propose a new framework for manifold lear ...
A prominent parameter in dealing with swash and morphological evolution is the runup length or height, defined as the limit of landward sea. Therefore, it is necessary to predict the runup height in this area. In this paper, the abilities of a new Adaptive ...
This paper presents a numerical procedure of material parameter identification for the coupled hydromechanical boundary value problem (BVP) of the self-boring pressuremeter test (SBPT) in clay. First, the neural network (NN) technique is applied to obtain ...