Publication

Numerical modeling and neural networks to identify model parameters from piezocone tests: I. FEM analysis of penetration in two-phase continuum

Abstract

This study presents a numerical approach designed for material parameter identification for the coupled hydro-mechanical boundary value problem (BVP) of the piezocone test (CPTU) in normally and lightly overconsolidated clayey soils. The study is presented in two related papers and it explores the possibility of using neural networks (NNs) to solve the complex inverse problem of the penetration test, including partially drained conditions. It has been demonstrated that the development of NN-based inverse models can be based on training data sets that consist of pseudo-experimental measurements derived from numerical simulations of the piezocone test. The first paper presents the development of the FE model of the studied problem, which can be used to generate a training data population corresponding to typical piezocone measurements that are obtained for clayey soils. The paper contains a detailed description of the numerical model with a sensitivity analysis with respect to different model parameters including the effect of partial drainage. The analysis also includes the model verification by means of a comparative analysis with numerical models of penetration proposed in the literature, as well as experimental evidence. Finally, owing to the loss of accuracy observed when applying a 'rough' frictional interface in the Updated Lagrangian formulation, an equivalent semi-numerical model for the piezocone test is proposed, taking into account a possible occurrence of partial drainage during penetration. Copyright (C) 2010 John Wiley & Sons, Ltd.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Numerical analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.
Computer simulation
Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics (computational physics), astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering.
Numerical weather prediction
Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.
Show more
Related publications (48)

Pseudo-Three-Dimensional Analytical Model of Linear Induction Motors for High-Speed Applications

Mario Paolone, André Hodder, Lucien André Félicien Pierrejean, Simone Rametti

Literature on linear induction motors (LIMs) has proposed several approaches to model the behavior of such devices for different applications. In terms of accuracy and fidelity, field analysis-based models are the most relevant. Closed-form or numerical so ...
2024

Numerical modeling of ground movement above underground salt mines in Tuzla city, Bosnia and Herzegovina

Stefan Marceta

The subsidence occurring in the city of Tuzla in Bosnia and Herzegovina (B&H) is an important issue which has caused several damages in the past decades. This phenomena is related to the massive extraction of salt and the presence of salt caverns below the ...
2023

TCB-spline-based isogeometric analysis method with high-quality parameterizations

Xiaodong Wei, Juan Cao

Isogeometric analysis (IGA) was introduced to integrate methods for analysis and computer-aided design (CAD) into a unified process. High-quality parameterization of a physical domain plays a crucial role in IGA. However, obtaining high-quality parameteriz ...
ELSEVIER SCIENCE SA2022
Show more
Related MOOCs (32)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Numerical Analysis for Engineers
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.