**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Multi-component particle size segregation in shallow granular avalanches

Abstract

A general continuum theory for particle size segregation and diffusive remixing in polydisperse granular avalanches is formulated using mixture theory. Comparisons are drawn to existing segregation theories for bi-disperse mixtures and the case of a ternary mixture of large, medium and small particles is investigated. In this case the general theory reduces to a system of two coupled parabolic segregation remixing equations, that have a single diffusion coefficient and three parameters which control the segregation rates between each pair of constituents. Considerable insight into many problems where the effect of diffusive remixing is small is provided by the non-diffusive case. Here the equations reduce to a system of two first order conservation laws, whose wave speeds are real for a very wide class of segregation parameters. In this regime the system is guaranteed to be non-strictly hyperbolic for all admissible concentrations. If the segregation rates do not increase monotonically with the grain size ratio, it is possible to enter another region of parameter space, where the equations may either be hyperbolic or elliptic dependent on the segregation rates and the local particle concentrations. Even if the solution is initially hyperbolic everywhere regions of ellipticity may develop during the evolution of the problem. Such regions in a time-dependent problem necessarily lead to short wavelength Hadamard instability and ill-posedness. A linear stability analysis is used to show that the diffusive remixing terms are sufficient to regularize the theory and prevent unbounded growth rates at high wave numbers. Numerical solutions for the time-dependent segregation of an initially almost homogeneously mixed state are performed using a standard Galerkin finite element method. The diffuse solutions may be linearly stable or unstable dependent on the initial concentrations. In the linearly unstable region “sawtooth” concentration stripes form that trap and focus the medium sized grains. The large and small particles still percolate through the avalanche and separate out at the surface and base of the flow due to the no flux boundary conditions. As these regions grow, the unstable striped region is annihilated. The theory is used to investigate inverse distribution grading and reverse coarse tail grading in multi-component mixtures. These terms are commonly used by geologists to describe particle size distributions in which either the whole grain size population coarsens upwards, or, just the coarsest clasts are inversely graded and a fine grained matrix is found everywhere. An exact solution is constructed for the steady segregation of a ternary mixture as it flows down an inclined slope from an initially homogeneously mixed inflow. It shows that for distribution grading, the particles segregate out into three inversely graded sharply segregated layers sufficiently far downstream, with the largest particles on top, the fines at the bottom and the medium sized grains sandwiched in between. The heights of the layers are strongly influenced by the downstream velocity profile, with layers becoming thinner in the faster moving near surface regions of the avalanche, and thicker in the slowly moving basal layers, for the same mass flux. Conditions for the existence of the solution are discussed and a simple and useful upper bound is derived for the distance at which all the particles completely segregate. When the effects of diffusive remixing are included the sharp concentration discontinuities are smoothed out, but the simple shock solutions capture many features of the evolving size distribution for typical diffusive remixing rates. The theory is also used to construct a simple model for reverse coarse tail grading, in which the fine grained material does not segregate. The numerical method is used to calculate diffuse solutions for a ternary mixture and a sharply segregated shock solution is derived that looks similar to the segregation of a bi-disperse mixture of large and medium grains. The presence of the fine grained material, however, prevents high concentrations of large or medium particles being achieved and there is a significant lengthening of the segregation distance.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (41)

Related MOOCs (28)

Related publications (131)

Ontological neighbourhood

Numerical stability

In the mathematical subfield of numerical analysis, numerical stability is a generally desirable property of numerical algorithms. The precise definition of stability depends on the context. One is numerical linear algebra and the other is algorithms for solving ordinary and partial differential equations by discrete approximation. In numerical linear algebra, the principal concern is instabilities caused by proximity to singularities of various kinds, such as very small or nearly colliding eigenvalues.

Racial segregation

Racial segregation is the separation of people into racial or other ethnic groups in daily life. Racial segregation can amount to the international crime of apartheid and a crime against humanity under the 2002 Rome Declaration of Statute of the International Criminal Court. Segregation can involve the spatial separation of the races, and mandatory use of different institutions, such as schools and hospitals by people of different races.

Numerical methods for ordinary differential equations

Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

Ignacio Pagonabarraga Mora, Elena Sesé Sansa

We derive a dynamical field theory for self-propelled particles subjected to generic torques and forces by explicitly coarse-graining their microscopic dynamics, described by a many-body Fokker-Planck equation. The model includes both intrinsic torques ind ...

François Gallaire, Edouard Boujo, Yves-Marie François Ducimetière, Shahab Eghbali

We study numerically and theoretically the gravity-driven flow of a viscous liquid film coating the inner side of a horizontal cylindrical tube and surrounding a shear-free dynamically inert gaseous core. The liquid-gas interface is prone to the Rayleigh-P ...

Jean-François Molinari, Brice Tanguy Alphonse Lecampion, Guillaume Anciaux, Nicolas Richart, Emil Gallyamov

Underground CO2 storage represents the most viable Negative Emission Technology capable of significantly reducing atmospheric carbon dioxide levels. Ideal reservoirs for CO2 sequestration are thick highly-porous and highly-permeable formations ensuring a h ...

2023