Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The surface integral formulation is a flexible, multiscale and accurate tool to simulate light scattering on nanostructures. Its generalization to periodic arrays is introduced in this paper. The general electromagnetic scattering problem is reduced to a discretizated model using the Method of Moments on the surface of the scatterers in the unit cell. The study of the resonances of an array of bowtie antennas illustrates the main features of the method. When placed into an array, the bowtie antennas show additional resonances compared to those of an individual antenna. Using the surface integral formulation, we are able to investigate both near-field and far-field properties of these resonances, with a high level of accuracy. (C) 2010 Elsevier B.V. All rights reserved.
Olivier Martin, Karim Achouri, Andrei Kiselev, Marco Riccardi
Olivier Sauter, Ambrogio Fasoli, Basil Duval, Stefano Coda, Jonathan Graves, Yves Martin, Duccio Testa, Patrick Blanchard, Alessandro Pau, Cristian Sommariva, Henri Weisen, Richard Pitts, Yann Camenen, Jan Horacek, Javier García Hernández, Marco Wischmeier, Nicola Vianello, Mikhail Maslov, Federico Nespoli, Yao Zhou, David Pfefferlé, Davide Galassi, Antonio José Pereira de Figueiredo, Jonathan Marc Philippe Faustin, Liang Yao, Dalziel Joseph Wilson, Hamish William Patten, Samuel Lanthaler, Xin Gao, Bernhard Sieglin, Otto Asunta