The near field and far field are regions of the electromagnetic (EM) field around an object, such as a transmitting antenna, or the result of radiation scattering off an object. Non-radiative near-field behaviors dominate close to the antenna or scattering object, while electromagnetic radiation far-field behaviors dominate at greater distances. Far-field E (electric) and B (magnetic) field strength decreases as the distance from the source increases, resulting in an inverse-square law for the radiated power intensity of electromagnetic radiation. By contrast, near-field E and B strength decrease more rapidly with distance: the radiative field decreases by the inverse-distance squared, the reactive field by an inverse-cube law, resulting in a diminished power in the parts of the electric field by an inverse fourth-power and sixth-power, respectively. The rapid drop in power contained in the near-field ensures that effects due to the near-field essentially vanish a few wavelengths away from the radiating part of the antenna. In a normally-operating antenna, positive and negative charges have no way of leaving the metal surface, and are separated from each other by the excitation "signal" voltage (a transmitter or other EM exciting potential). This generates an oscillating (or reversing) electrical dipole, which affects both the near field and the far field. The boundary between the near field and far field regions is only vaguely defined, and it depends on the dominant wavelength (λ) emitted by the source and the size of the radiating element. The near field refers to places nearby the antenna conductors, or inside any polarizable media surrounding it, where the generation and emission of electromagnetic waves can be interfered with while the field lines remain electrically attached to the antenna, hence absorption of radiation in the near field by adjacent conducting objects detectably affects the loading on the signal generator (the transmitter).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (10)
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
PHYS-434: Physics of photonic semiconductor devices
Series of lectures covering the physics of quantum heterostructures, dielectric microcavities and photonic crystal cavities as well as the properties of the main light emitting devices that are light-
EE-345: Radiation and antennas
Les antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base
Show more
Related lectures (34)
Gupta-Bleuler Quantization
Covers the Gupta-Bleuler quantization method in Quantum Field Theory, focusing on redundancy in the electromagnetic field and the recovery of Maxwell equations.
Electromagnetic Field
Covers the electromagnetic field in astrophysics and field theory, including the symmetry principle and interaction terms.
Sound Radiation: The Doublet
Explores the theory of sound radiation from a doublet, analyzing directivity and wave interactions.
Show more
Related publications (415)

Spatiotemporal energy‐density distribution of time‐reversed electromagnetic fields

Marcos Rubinstein, Farhad Rachidi-Haeri, Hamidreza Karami, Elias Per Joachim Le Boudec, Nicolas Mora Parra

Time reversal exploits the invariance of electromagnetic wave propagation in reciprocal and lossless media to localize radiating sources. Time-reversed measurements are back-propagated in a simulated domain and converge to the unknown source location. The ...
2024

A Spectral Ansatz for The Long-Time Homogenization of The Wave Equation

Matthias Ruf

  • Consider the wave equation with heterogeneous coefficients in the homogenization regime. At large times, the wave interacts in a nontrivial way with the heterogeneities, giving rise to effective dispersive effects. The main achievement of the present wor ...
Ecole Polytechnique2024

Memristive Control of Plasmon-Mediated Nonlinear Photoluminescence in Au Nanowires

Konstantin Malchow

Nonlinear photoluminescence (N-PL) is a broadband photon emission arising from a nonequilibrium heated electron distribution generated at the surface of metallic nanostructures by ultrafast pulsed laser illumination. N-PL is sensitive to surface morphology ...
Amer Chemical Soc2024
Show more
Related concepts (27)
Radio
Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.
Evanescent field
In electromagnetics, an evanescent field, or evanescent wave, is an oscillating electric and/or magnetic field that does not propagate as an electromagnetic wave but whose energy is spatially concentrated in the vicinity of the source (oscillating charges and currents). Even when there is a propagating electromagnetic wave produced (e.g., by a transmitting antenna), one can still identify as an evanescent field the component of the electric or magnetic field that cannot be attributed to the propagating wave observed at a distance of many wavelengths (such as the far field of a transmitting antenna).
Dipole antenna
In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.