Publication

Structure-preserving eigenvalue solvers for robust stability and controllability estimates

Daniel Kressner
2006
Conference paper
Abstract

Structured eigenvalue problems feature a prominent role in many algorithms for the computation of robust measures for the stability or controllability of a linear control system. Structures that typically arise are Hamiltonian, skew-Hamiltonian, and symplectic. The use of eigenvalue solvers that preserve such structures can enhance the reliability and efficiency of algorithms for robust stability and controllability measures. This aspect is the focus of the present work, which summarizes and extends existing structure-preserving eigenvalue solvers. Also, a new method for estimating the distance to uncontrollability in a cheap manner is presented. The structured eigenvalue algorithms described in this paper are intented to become part of HAPACK, a software package for solving structured eigenvalue problems and applications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.