Memory-efficient Krylov subspace techniques for solving large-scale Lyapunov equations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper introduces a new algorithm for consensus optimization in a multi-agent network, where all agents collaboratively find a minimizer for the sum of their private functions. All decentralized algorithms rely on communications between adjacent nodes. ...
This paper develops a distributed optimization strategy with guaranteed exact convergence for a broad class of left-stochastic combination policies. The resulting exact diffusion strategy is shown in Part II of this paper to have a wider stability range an ...
Randomized trace estimation is a popular and well-studied technique that approximates the trace of a large-scale matrix B by computing the average of x(T) Bx for many samples of a random vector X. Often, B is symmetric positive definite (SPD) but a number ...
We study many-body localization (MBL) in a pair-hopping model exhibiting strong fragmentation of the Hilbert space. We show that several Krylov subspaces have both ergodic statistics in the thermodynamic limit and a dimension that scales much slower than t ...
Block Krylov subspace methods (KSMs) comprise building blocks in many state-of-the-art solvers for large-scale matrix equations as they arise, for example, from the discretization of partial differential equations. While extended and rational block Krylov ...
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
We analyze an expansion of the generalized block Krylov subspace framework of [Electron.\ Trans.\ Numer.\ Anal., 47 (2017), pp. 100-126]. This expansion allows the use of low-rank modifications of the matrix projected onto the block Krylov subspace and con ...
Evaluating the action of a matrix function on a vector, that is x=f(M)v, is an ubiquitous task in applications. When M is large, one usually relies on Krylov projection methods. In this paper, we provide effective choices for the pole ...
We introduce a two-level preconditioner for the efficient solution of large scale saddle point linear systems arising from the finite element (FE) discretization of parametrized Stokes equations. This preconditioner extends the Multi Space Reduced Basis (M ...
We consider the discretization of time-space diffusion equations with fractional derivatives in space and either 1D or 2D spatial domains. The use of implicit Euler scheme in time and finite differences or finite elements in space, leads to a sequence of d ...