Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
We study many-body localization (MBL) in a pair-hopping model exhibiting strong fragmentation of the Hilbert space. We show that several Krylov subspaces have both ergodic statistics in the thermodynamic limit and a dimension that scales much slower than the full Hilbert space but still exponentially. Such a property allows us to study the MBL phase transition in systems including up to 64 spins. The different Krylov spaces that we consider show clear signatures of a many-body localization transition, both in the Kullback-Leibler divergence of the distribution of their level spacing ratio and their entanglement properties. However, they also present distinct scalings with the system size. Depending on the subspace, the critical disorder strength can be nearly independent of the system size or conversely show an approximately linear increase with the number of spins.