Publication

Combining the Frontal and Side AAM For Robust Face Detection

Anil Yuce
2010
Student project
Abstract

The statistical modelling of faces using Active Appearance Models is an efficient approach to detect and interpret faces. Two important drawbacks of the method are the lack of robustness against occlusions and side poses of the face. The FR-PCA algorithm introduced recently provides a successful method of getting rid of occlusions in the image by reconstruction it using PCA bases of random samplings. In the context of this thesis, the Side AAM for modelling profile faces were introduced, and the FR-PCA algorithms usage was extended by employing some specific features of the reconstruction to build a classifier that can detect occlusions and to design a second method that can decide on the pose of the face in a similar manner. Finally these three approaches were combined together and a robust model of face detection was built, implemented and verified. The model is robust against occlusions and it can switch between frontal and side AAMs with the help of the occlusion and pose detectors proposed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.