Nonlinear Stability of Self-Similar Solutions for Semilinear Wave Equations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Among hydrodynamically unstable flows, the amplifier-flows are characterized by their large amplification potential in presence of external noise. Since amplifiers do not have an intrinsic dynamics, a chosen forcing can be applied to eventually control the ...
In this paper, we study local well-posedness and orbital stability of standing waves for a singularly perturbed one-dimensional nonlinear Klein-Gordon equation. We first establish local well-posedness of the Cauchy problem by a fixed point argument. Unlike ...
In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical ...
The global linear stability of a water drop on hot nonwetting surfaces is studied. The droplet is assumed to have a static shape and the surface tension gradient is neglected. First, the nonlinear steady Boussinesq equation is solved to obtain the axisymme ...
In this paper, using Lyapunov’s stability theorem, the transient stability conditions for a grid-following Voltage Source Converter (VSC) are found. These conditions take into account both the grid specifications and the VSC’s dynamics. The derived conditi ...
We derive a dynamical field theory for self-propelled particles subjected to generic torques and forces by explicitly coarse-graining their microscopic dynamics, described by a many-body Fokker-Planck equation. The model includes both intrinsic torques ind ...
In engineering, oscillatory instabilities and resonances are often considered undesirable flow features and measures are taken to avoid them. This may include avoiding certain parametric regions or implementing control and mitigation strategies. However, t ...
When laminar shear flows in large wall-bounded domains transition to turbulence, the flow exhibits spatio-temporally chaotic dynamics. Despite its chaotic dynamics, the flow may self-organize into characteristic spatially periodic patterns of unknown origi ...
The study and control of flow instabilities is a key problem in aerodynamics. Aircrafts are designed not only to generate the lift force needed to balance their weight but, more importantly, to be stable and reasonably steady when in cruise conditions. Sim ...
I will try to explain, without going into too much detail, how one can
consider a non-linear wave equation as a dynamical system and what it brings to the study of its
solutions. We begin by considering our model case, the non-linear Klein-Gordon equation ...