Labelling cell structures and tracking cell lineage in zebrafish using SNAP-tag
Related publications (35)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Fundamental properties of light unavoidably impose features on images collected using fluorescence microscopes. Accounting for these features is often critical in quantitatively interpreting microscopy images, especially those gathering information at scal ...
The evolution of the 3D morphology is at the center of many relevant biological processes ranging from cellular differentiation to cancer invasion and metastasis. Microscopy techniques, such as electron microscopy (EM), super-resolution (SR) optical micros ...
Studying dynamic biological processes, such as heart development and function in zebrafish embryos, often relies on multi-channel fluorescence labeling to distinguish multiple anatomical features, yet also demands high frame rates to capture rapid cell mot ...
The full understanding of cellular functions requires information about protein numbers for various biomolecular assemblies and their dynamics, which can be partly accessed by super-resolution fluorescence microscopy. Yet, many protein assemblies and cellu ...
Super-resolution fluorescence microscopy is widespread, owing to its demonstrated ability to resolve dynamical processes within cells and to identify the structure and position of specific proteins in the interior of protein complexes. Nowadays, subcellula ...
Fluorescence microscopy is the method of choice to monitor dynamic processes in living cells due to its non-invasive nature. A variety of different fluorophores and labeling systems are currently used to selectively visualise structures or biomolecules of ...
Optical microscopy is one widely used tool to study cell functions and the interaction of molecules at a sub-cellular level. Optical microscopy techniques can be broadly divided into two categories: partially coherent and incoherent. Coherent microscopy te ...
Total internal reflection fluorescence microscopy (TIRF) produces 2D images of the fluorescent activity integrated over a very thin layer adjacent to the glass coverslip. By varying the illumination angle (multi-angle TIRF), a stack of 2D images is acquire ...
Horizontal black lipid membranes (BLMs) enable optical microscopy to be combined with the electrophysiological measurements for studying ion channels, peptide pores, and ionophores. However, a careful literature review reveals that simultaneous fluorescenc ...
Mitochondrial dynamics refers to the processes of fusion, fission, and transport that aid mitochondria in accomplishing their many roles; including ATP production, oxygen sensing, and homeostasis. Due to their involvement in numerous essential cellular act ...