Automated Quantification of Morphodynamics for High-Throughput Live Cell Imaging Datasets
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The response of a population of neurons to time-varying synaptic inputs can show a rich phenomenology, hardly predictable from the dynamical properties of the membrane's inherent time constants. For example, a network of neurons in a state of spontaneous a ...
How do neurons dynamically encode and treat information? Each neuron communicates with its distinctive language made of long silences intermitted by occasional spikes. The spikes are prompted by the pooled effect of a population of pre-synaptic neurons. To ...
Native functional brain circuits show different numbers of synapses (synaptic densities) in the cerebral cortex. Until now, different synaptic densities could not be studied in vitro using current cell culture methods for primary neurons. Herein, we presen ...
Neuronal circuitry is often considered a clean slate that can be dynamically and arbitrarily molded by experience. However, when we investigated synaptic connectivity in groups of pyramidal neurons in the neocortex, we found that both connectivity and syna ...
The brain is the most mysterious and intricate biological structure known to man. It dominates the way we live, think, reason and behave. It is built of billions of neurons that communicate with each other through trillions of connections using electrical ...
Predicting activity of single neuron is an important part of the computational neuroscience and a great challenge. Several mathematical models exist, from the simple (one compartment and few parameters, like the SRM or the IF-type models), to the more comp ...
Micro-electrode array (MEA) technology has been exploited as a powerful tool for providing distributed information on learning, memory and information processing in cultured neuronal tissue, enabling an experimental perspective from the single cell level u ...
Spiking Neuron Networks (SNNs) are often referred to as the 3rd generation of neural networks. They derive their strength and interest from an accurate modelling of synaptic interactions between neurons, taking into account the time of spike emission. SNNs ...
The present work was performed to determine the ability of neurotrophic factors to allow axonal regeneration across a 15-mm-long gap in the rat sciatic nerve. Synthetic nerve guidance channels slowly releasing NGF and GDNF were fabricated and sutured to th ...
Temporal integration of information and prediction of future sensory inputs are assumed to be important computational tasks of generic cortical microcircuits. It has remained open how cortical microcircuits could possibly achieve this, especially since the ...