A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We report on photo-current generation in freestanding monolayered gold nanoparticle membranes excited by using a focused laser beam. The absence of a substrate leads to a 50% increase of the photo-current at the surface plasmon resonance. This current is a ...
We have designed, fabricated and measured the first plasmon-assisted normal incidence GaN/AlN quantum cascade detector (QCD) making use of the surface plasmon resonance of a two-dimensional nanohole Au array integrated on top of the detector absorption reg ...
Label-free biosensing based on metallic nano-particles supporting localized surface plasmon resonances (LSPR) has recently received growing interest (Anker, J. N., et al. Nat. Mater. 2008, 7, 442-453). Besides its competitive sensitivity (Yonzon, C. R., et ...
In this paper we provide a mathematical framework for localized plasmon resonance of nanoparticles. Using layer potential techniques associated with the full Maxwell equations, we derive small-volume expansions for the electromagnetic fields, which are uni ...
Compound plasmonic resonances arise due to the interaction between discrete and continuous metallic nanostructures. Such combined nanostructures provide a versatility and tunability beyond that of most other metallic nanostructures. In order to observe suc ...
The most widely used substrates for fluorescent immunoassay are based on transparent materials such as glass or plastic with almost no optical functionality. Very recently, optical nanostructures made of metal on dielectrics have been proposed to perform p ...
We report on photo-current generation in freestanding monolayered gold nanoparticle membranes excited by using a laser. The absence of a substrate leads to a 50% increase of the photocurrent at plasmon resonance. This current is attributed to a combination ...
Localized surface plasmons are charge density oscillations confined to metallic nanoparticles. Excitation of localized surface plasmons by an electromagnetic field at an incident wavelength where resonance occurs results in a strong light scattering and an ...
Biosensors based on the localized surface plasmon resonance (LSPR) of individual metallic nanoparticles promise to deliver modular, low-cost sensing with high-detection thresholds. However, they continue to suffer from relatively low sensitivity and figure ...
Sensing using surface plasmon resonances is one of the most promising practical applications of plasmonic nanostructures and Fano resonances allow achieving a lower detection limit thanks to their narrow spectral features. However, a narrow spectral width ...