Schedule (computer science)In the fields of databases and transaction processing (transaction management), a schedule (or history) of a system is an abstract model to describe execution of transactions running in the system. Often it is a list of operations (actions) ordered by time, performed by a set of transactions that are executed together in the system. If the order in time between certain operations is not determined by the system, then a partial order is used.
Global serializabilityIn concurrency control of databases, transaction processing (transaction management), and other transactional distributed applications, global serializability (or modular serializability) is a property of a global schedule of transactions. A global schedule is the unified schedule of all the individual database (and other transactional object) schedules in a multidatabase environment (e.g., federated database).
Commitment orderingCommitment ordering (CO) is a class of interoperable serializability techniques in concurrency control of databases, transaction processing, and related applications. It allows optimistic (non-blocking) implementations. With the proliferation of multi-core processors, CO has also been increasingly utilized in concurrent programming, transactional memory, and software transactional memory (STM) to achieve serializability optimistically. CO is also the name of the resulting transaction schedule (history) property, defined in 1988 with the name dynamic atomicity.
Snapshot isolationIn databases, and transaction processing (transaction management), snapshot isolation is a guarantee that all reads made in a transaction will see a consistent snapshot of the database (in practice it reads the last committed values that existed at the time it started), and the transaction itself will successfully commit only if no updates it has made conflict with any concurrent updates made since that snapshot.
Concurrency controlIn information technology and computer science, especially in the fields of computer programming, operating systems, multiprocessors, and databases, concurrency control ensures that correct results for concurrent operations are generated, while getting those results as quickly as possible. Computer systems, both software and hardware, consist of modules, or components. Each component is designed to operate correctly, i.e., to obey or to meet certain consistency rules.
SerializationIn computing, serialization (or serialisation) is the process of translating a data structure or object state into a format that can be stored (e.g. in secondary storage devices, data buffers in primary storage devices) or transmitted (e.g. data streams over computer networks) and reconstructed later (possibly in a different computer environment). When the resulting series of bits is reread according to the serialization format, it can be used to create a semantically identical clone of the original object.
Precedence graphA precedence graph, also named conflict graph and serializability graph, is used in the context of concurrency control in databases. The precedence graph for a schedule S contains: A node for each committed transaction in S An arc from Ti to Tj if an action of Ti precedes and conflicts with one of Tj's actions. That is the actions belong to different transactions, at least one of the actions is a write operation, and the actions access the same object (read or write). A precedence graph of the schedule D, with 3 transactions.
Relational modelThe relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.
Relational databaseA relational database is a (most commonly digital) database based on the relational model of data, as proposed by E. F. Codd in 1970. A system used to maintain relational databases is a relational database management system (RDBMS). Many relational database systems are equipped with the option of using SQL (Structured Query Language) for querying and updating the database. The term "relational database" was first defined by E. F. Codd at IBM in 1970. Codd introduced the term in his research paper "A Relational Model of Data for Large Shared Data Banks".
Isolation (database systems)In database systems, isolation determines how transaction integrity is visible to other users and systems. A lower isolation level increases the ability of many users to access the same data at the same time, but increases the number of concurrency effects (such as dirty reads or lost updates) users might encounter. Conversely, a higher isolation level reduces the types of concurrency effects that users may encounter, but requires more system resources and increases the chances that one transaction will block another.