Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We present a communication based navigation algorithm for robotic swarms. It lets robots guide each other's navigation by exchanging messages containing navigation information through the wireless network formed among the swarm. We study the use of this algorithm in two different scenarios. In the first scenario, the swarm guides a single robot to a target, while in the second, all robots of the swarm navigate back and forth between two targets. In both cases, the algorithm provides efficient navigation, while being robust to failures of robots in the swarm. Moreover, we show that in the latter case, the system lets the swarm self-organize into a robust dynamic structure. This self-organization further improves navigation efficiency, and is able to find shortest paths in cluttered environments. We test our system both in simulation and on real robots.
Jamie Paik, Kevin Andrew Holdcroft, Christoph Heinrich Belke, Alexander Thomas Sigrist