Publication

Robust Bayesian reinforcement learning through tight lower bounds

Christos Dimitrakakis
2011
Report or working paper
Abstract

In the Bayesian approach to sequential decision making, exact calculation of the (subjective) utility is intractable. This extends to most special cases of interest, such as reinforcement learning problems. While utility bounds are known to exist for this problem, so far none of them were particularly tight. In this paper, we show how to efficiently calculate a lower bound, which corresponds to the utility of a near-optimal {\em memoryless} policy for the decision problem, which is generally different from both the Bayes-optimal policy and the policy which is optimal for the expected MDP under the current belief. We then show how these can be applied to obtain robust exploration policies in a Bayesian reinforcement learning setting.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Reinforcement learning
Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning. Reinforcement learning differs from supervised learning in not needing labelled input/output pairs to be presented, and in not needing sub-optimal actions to be explicitly corrected.
Bayesian optimization
Bayesian optimization is a sequential design strategy for global optimization of black-box functions that does not assume any functional forms. It is usually employed to optimize expensive-to-evaluate functions. The term is generally attributed to Jonas Mockus and is coined in his work from a series of publications on global optimization in the 1970s and 1980s. Bayesian optimization is typically used on problems of the form , where is a set of points, , which rely upon less than 20 dimensions (), and whose membership can easily be evaluated.
Machine learning
Machine learning (ML) is an umbrella term for solving problems for which development of algorithms by human programmers would be cost-prohibitive, and instead the problems are solved by helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms. Recently, generative artificial neural networks have been able to surpass results of many previous approaches.
Show more
Related publications (62)

End-to-End Learning for Stochastic Optimization: A Bayesian Perspective

Daniel Kuhn, Yves Rychener, Tobias Sutter

We develop a principled approach to end-to-end learning in stochastic optimization. First, we show that the standard end-to-end learning algorithm admits a Bayesian interpretation and trains a posterior Bayes action map. Building on the insights of this an ...
2023

Reinforcement learning approach to control an inverted pendulum: A general framework for educational purposes

Jesus Sanchez Rodriguez

Machine learning is often cited as a new paradigm in control theory, but is also often viewed as empirical and less intuitive for students than classical model-based methods. This is particularly the case for reinforcement learning, an approach that does n ...
PUBLIC LIBRARY SCIENCE2023

Multi-agent Reinforcement Learning for Assembly of a Spanning Structure

Gabriel Rémi Vallat

In this master thesis, multi-agent reinforcement learning is used to teach robots to build a self-supporting structure connecting two points. To accomplish this task, a physics simulator is first designed using linear programming. Then, the task of buildin ...
2023
Show more
Related MOOCs (13)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.