Read-copy-updateIn computer science, read-copy-update (RCU) is a synchronization mechanism that avoids the use of lock primitives while multiple threads concurrently read and update elements that are linked through pointers and that belong to shared data structures (e.g., linked lists, trees, hash tables). Whenever a thread is inserting or deleting elements of data structures in shared memory, all readers are guaranteed to see and traverse either the older or the new structure, therefore avoiding inconsistencies (e.g.
Barrier (computer science)In parallel computing, a barrier is a type of synchronization method. A barrier for a group of threads or processes in the source code means any thread/process must stop at this point and cannot proceed until all other threads/processes reach this barrier. Many collective routines and directive-based parallel languages impose implicit barriers. For example, a parallel do loop in Fortran with OpenMP will not be allowed to continue on any thread until the last iteration is completed.
Yield (multithreading)In computer science, yield is an action that occurs in a computer program during multithreading, of forcing a processor to relinquish control of the current running thread, and sending it to the end of the running queue, of the same scheduling priority. Different programming languages implement yielding in various ways. pthread_yield() in the language C, a low level implementation, provided by POSIX Threads std::this_thread::yield() in the language C++, introduced in C++11.
MySQL ClusterMySQL Cluster is a technology providing shared-nothing clustering and auto-sharding for the MySQL database management system. It is designed to provide high availability and high throughput with low latency, while allowing for near linear scalability. MySQL Cluster is implemented through the NDB or NDBCLUSTER storage engine for MySQL ("NDB" stands for Network Database). MySQL Cluster is designed around a distributed, multi-master ACID compliant architecture with no single point of failure.
DragonFly BSDDragonFly BSD is a free and open-source Unix-like operating system forked from FreeBSD 4.8. Matthew Dillon, an Amiga developer in the late 1980s and early 1990s and FreeBSD developer between 1994 and 2003, began working on DragonFly BSD in June 2003 and announced it on the FreeBSD mailing lists on 16 July 2003. Dillon started DragonFly in the belief that the techniques adopted for threading and symmetric multiprocessing in FreeBSD 5 would lead to poor performance and maintenance problems.