Publication

Universal Scaling Law for Jets of Collapsing Bubbles

Abstract

Cavitation bubbles collapsing and rebounding in a pressure gradient del p form a "microjet" enveloped by a "vapor jet." This Letter presents unprecedented observations of the vapor jets formed in a uniform gravity-induced del p, modulated aboard parabolic flights. The data uncover that the normalized jet volume is independent of the liquid density and viscosity and proportional to zeta equivalent to vertical bar del p vertical bar R-0/Delta p, where R-0 the maximal bubble radius and Delta p is the driving pressure. A derivation inspired by "Kelvin-Blake" considerations confirms this law and reveals its negligible dependence of surface tension. We further conjecture that the jet only pierces the bubble boundary if zeta greater than or similar to 4 X 10(-4).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.