**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Riemann zeta function

Summary

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots for \operatorname{Re}(s) > 1, and its analytic continuation elsewhere.
The Riemann zeta function plays a pivotal role in analytic number theory, and has applications in physics, probability theory, and applied statistics.
Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century. Bernhard Riemann's 1859 article "On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to a complex variable, proved its meromorphic continuation and functional equation, and established a relation between its zeros and the distribution of prime numbers. This paper also contained t

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people

No results

Related concepts (79)

Riemann hypothesis

In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Man

Gamma function

In mathematics, the gamma function (represented by Γ, the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma functio

Prime number

A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. F

Related courses (24)

Related publications (11)

MATH-494: Topics in arithmetic geometry

P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applications, notably we will prove rationality of the Weil Zeta function.

MATH-201: Analysis III

Calcul différentiel et intégral: Eléments d'analyse vectorielle, intégration par partie, intégrale curviligne, intégrale de surface, théorèmes de Stokes, Green, Gauss, fonctions harmoniques;
Eléments d'analyse complexe: fonctions holomorphes ou analytiques, théorème des résidus et applications

MATH-313: Introduction to analytic number theory

The aim of this course is to present the basic techniques of analytic number theory.

Loading

Loading

Loading

Related lectures (45)

Related units

No results

We study the elliptic curves given by y(2) = x(3) + bx + t(3n+1) over global function fields of characteristic 3 ; in particular we perform an explicit computation of the L-function by relating it to the zeta function of a certain superelliptic curve u(3) + bu = v(3n+1). In this way, using the Neron-Tate height on the Mordell-Weil group, we obtain lattices in dimension 2.3(n) for every n >= 1, which improve on the currently best known sphere packing densities in dimensions 162 (case n = 4) and 486 (case n = 5). For n = 3, the construction has the same packing density as the best currently known sphere packing in dimension 54, and for n = 1 it has the same density as the lattice E-6 in dimension 6.

The aim of this research is to establish a relation between the derivatives of Hardy's Z function and the argument of the Riemann zeta function in the neighborhood of points where |Z| reaches a large maximum. In this paper, we make a step toward this goal by solving a problem of the same nature.

2011Let d(n) denote Dirichlet's divisor function for positive integer numbers. This work is primarily concerned with the study of We are interested, in the error term where Ρ3 is a polynomial of degree 3 ; more precisely xΡ3(log x) is the residue of in s = 1. A. Ivić showed that E(x) = Ο(x1/2+ε) for all ε > 0 (cf. [9], p.394). We will prove that for all x > 0, we have With this intention, we apply Perron's formula to the generating function ζ4(s)/ ζ (2s) and Landau's finite difference method. It was conjectured that E(x) = Ο(x1/4+ε) for ε > 0. The existence of non-trivial zeros of the Riemann ζ function implies that we cannot do better, that is The study of the Riesz means for ρ sufficiently large shows that their error term, is an infinite series , on the zeros of the Riemann Zeta function added with a development , into a series of Hardy-Voronoï's type, both being convergent. To find the "meaning" of , one could consider the difference But the series (probably) doesn't converge.We will thus substract only a finite part of , weighted by a smooth function ω, the number of terms of the finite part depending on x. If we consider this new error term , we obtain, using a classical method due to Hardy, that for x ≥ 1.