Cyclone (programming language)The Cyclone programming language is intended to be a safe dialect of the C language. Cyclone is designed to avoid buffer overflows and other vulnerabilities that are possible in C programs, without losing the power and convenience of C as a tool for system programming. Cyclone development was started as a joint project of AT&T Labs Research and Greg Morrisett's group at Cornell University in 2001. Version 1.0 was released on May 8, 2006. Cyclone attempts to avoid some of the common pitfalls of C, while still maintaining its look and performance.
Static timing analysisStatic timing analysis (STA) is a simulation method of computing the expected timing of a synchronous digital circuit without requiring a simulation of the full circuit. High-performance integrated circuits have traditionally been characterized by the clock frequency at which they operate. Measuring the ability of a circuit to operate at the specified speed requires an ability to measure, during the design process, its delay at numerous steps.
Contact binaryIn astronomy, a contact binary is a binary star system whose component stars are so close that they touch each other or have merged to share their gaseous envelopes. A binary system whose stars share an envelope may also be called an overcontact binary. The term "contact binary" was introduced by astronomer Gerard Kuiper in 1941. Almost all known contact binary systems are eclipsing binaries; eclipsing contact binaries are known as W Ursae Majoris variables, after their type star, W Ursae Majoris.
Threaded codeIn computer science, threaded code is a programming technique where the code has a form that essentially consists entirely of calls to subroutines. It is often used in compilers, which may generate code in that form or be implemented in that form themselves. The code may be processed by an interpreter or it may simply be a sequence of machine code call instructions. Threaded code has better density than code generated by alternative generation techniques and by alternative calling conventions.
BytecodeBytecode (also called portable code or p-code) is a form of instruction set designed for efficient execution by a software interpreter. Unlike human-readable source code, bytecodes are compact numeric codes, constants, and references (normally numeric addresses) that encode the result of compiler parsing and performing semantic analysis of things like type, scope, and nesting depths of program objects. The name bytecode stems from instruction sets that have one-byte opcodes followed by optional parameters.
Exec (system call)In computing, exec is a functionality of an operating system that runs an in the context of an already existing process, replacing the previous executable. This act is also referred to as an overlay. It is especially important in Unix-like systems, although it exists elsewhere. As no new process is created, the process identifier (PID) does not change, but the machine code, data, heap, and stack of the process are replaced by those of the new program.
"Hello, World!" programA "Hello, World!" program is generally a computer program that ignores any input, and outputs or displays a message similar to "Hello, World!". A small piece of code in most general-purpose programming languages, this program is used to illustrate a language's basic syntax. "Hello, World!" programs are often the first a student learns to write in a given language, and they can also be used as a sanity check to ensure computer software intended to compile or run source code is correctly installed, and that its operator understands how to use it.
Source lines of codeSource lines of code (SLOC), also known as lines of code (LOC), is a software metric used to measure the size of a computer program by counting the number of lines in the text of the program's source code. SLOC is typically used to predict the amount of effort that will be required to develop a program, as well as to estimate programming productivity or maintainability once the software is produced. Many useful comparisons involve only the order of magnitude of lines of code in a project.
Basic blockIn compiler construction, a basic block is a straight-line code sequence with no branches in except to the entry and no branches out except at the exit. This restricted form makes a basic block highly amenable to analysis. Compilers usually decompose programs into their basic blocks as a first step in the analysis process. Basic blocks form the vertices or nodes in a control-flow graph. The code in a basic block has: One entry point, meaning that no code within it is the destination of a jump instruction anywhere in the program.
Trampoline (computing)In computer programming, the word trampoline has a number of meanings, and is generally associated with jump instructions (i.e. moving to different code paths). Trampolines (sometimes referred to as indirect jump vectors) are memory locations holding addresses pointing to interrupt service routines, I/O routines, etc. Execution jumps into the trampoline and then immediately jumps out, or bounces, hence the term trampoline.