This paper proposes an elegant technique for the simultaneous measurement of in-plane and out-of-plane displacements of a deformed object in digital holographic interferometry. The measurement relies on simultaneously illuminating the object from multiple directions and using a single reference beam to interfere with the scattered object beams on the CCD plane. Numerical reconstruction provides the complex object wave-fields or complex amplitudes corresponding to prior and post deformation states of the object. These complex amplitudes are used to generate the complex reconstructed interference field whose real part constitutes a moiré interference fringe pattern. Moiré fringes encode information about multiple phases which are extracted by introducing a spatial carrier in one of the object beams and subsequently using a Fourier transform operation. The information about the in-plane and out-of-plane displacements is then ascertained from the estimated multiple phases using sensitivity vectors of the optical configuration.
Till Junge, Ali Falsafi, Martin Ladecký
Laurent Villard, Stephan Brunner, Alberto Bottino, Moahan Murugappan
Martin Alois Rohrmeier, Johannes Hentschel, Gabriele Cecchetti, Sabrina Laneve, Ludovica Schaerf