Randomized roundingWithin computer science and operations research, many combinatorial optimization problems are computationally intractable to solve exactly (to optimality). Many such problems do admit fast (polynomial time) approximation algorithms—that is, algorithms that are guaranteed to return an approximately optimal solution given any input. Randomized rounding is a widely used approach for designing and analyzing such approximation algorithms.
Hardware random number generatorIn computing, a hardware random number generator (HRNG), true random number generator (TRNG) or non-deterministic random bit generator (NRBG) is a device that generates random numbers from a physical process capable of producing entropy (in other words, the device always has access to a physical entropy source), rather than by means of an algorithm. Such devices are often based on microscopic phenomena that generate low-level, statistically random "noise" signals, such as thermal noise, the photoelectric effect, involving a beam splitter, and other quantum phenomena.
Pseudo-polynomial timeIn computational complexity theory, a numeric algorithm runs in pseudo-polynomial time if its running time is a polynomial in the numeric value of the input (the largest integer present in the input)—but not necessarily in the length of the input (the number of bits required to represent it), which is the case for polynomial time algorithms. In general, the numeric value of the input is exponential in the input length, which is why a pseudo-polynomial time algorithm does not necessarily run in polynomial time with respect to the input length.
Fetch-and-addIn computer science, the fetch-and-add (FAA) CPU instruction atomically increments the contents of a memory location by a specified value. That is, fetch-and-add performs the operation increment the value at address x by a, where x is a memory location and a is some value, and return the original value at x. in such a way that if this operation is executed by one process in a concurrent system, no other process will ever see an intermediate result. Fetch-and-add can be used to implement concurrency control structures such as mutex locks and semaphores.
LogarithmIn mathematics, the logarithm is the inverse function to exponentiation. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base 10 of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logb x, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation.
List of logarithmic identitiesIn mathematics, many logarithmic identities exist. The following is a compilation of the notable of these, many of which are used for computational purposes. {| cellpadding=3 | || because || |- | || because || |} By definition, we know that: where or . Setting , we can see that: So, substituting these values into the formula, we see that: which gets us the first property. Setting , we can see that: So, substituting these values into the formula, we see that: which gets us the second property.
Deterministic context-free languageIn formal language theory, deterministic context-free languages (DCFL) are a proper subset of context-free languages. They are the context-free languages that can be accepted by a deterministic pushdown automaton. DCFLs are always unambiguous, meaning that they admit an unambiguous grammar. There are non-deterministic unambiguous CFLs, so DCFLs form a proper subset of unambiguous CFLs. DCFLs are of great practical interest, as they can be parsed in linear time, and various restricted forms of DCFGs admit simple practical parsers.
DeterminismDeterminism is the philosophical view that events are completely determined by previously existing causes. Deterministic theories throughout the history of philosophy have developed from diverse and sometimes overlapping motives and considerations. Like eternalism, determinism focuses on particular events rather than the future as a concept. The opposite of determinism is indeterminism, or the view that events are not deterministically caused but rather occur due to chance.
Monte Carlo algorithmIn computing, a Monte Carlo algorithm is a randomized algorithm whose output may be incorrect with a certain (typically small) probability. Two examples of such algorithms are the Karger–Stein algorithm and the Monte Carlo algorithm for minimum feedback arc set. The name refers to the Monte Carlo casino in the Principality of Monaco, which is well-known around the world as an icon of gambling. The term "Monte Carlo" was first introduced in 1947 by Nicholas Metropolis.
Deterministic finite automatonIn the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (DFSM), or deterministic finite-state automaton (DFSA)—is a finite-state machine that accepts or rejects a given string of symbols, by running through a state sequence uniquely determined by the string. Deterministic refers to the uniqueness of the computation run.