Heat Transfer in the LHC Main Superconducting Bus Bars
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis work we investigate the heat transfer through the electrical insulation of superconducting cables cooled by super fluid helium. The cable insulation constitutes the most severe barrier for heat extraction from the superconducting magnets of ...
NbTi-based Rutherford cables are used in the coils of the Large Hadron Collider (LHC) magnets. These cables are designed to operate with currents up to 13 kA at temperatures of 1.9 K. Beam losses can locally heat the superconducting cables above the critic ...
The interconnections between Large Hadron Collider (LHC) main dipole and quadrupole magnets are made of soldered joints of two superconducting cables stabilized by a copper bus bar. The 2008 incident revealed the possible presence of defects in the interco ...
A new concept of polyimide electrical insulation for superconducting cables of accelerator magnets was developed in the last years. Its enhanced He II permeability allows a significant improvement of the heat extraction from the coil. This cable insulation ...
The operation of Nb–Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Co ...
We demonstrate in this paper how to use direct modeling of heat transfer and circuital equations based on "packaged" simulation tools to produce a model suitable for the study of quench propagation in a system of magnetically coupled solenoids protected wi ...
We demonstrate in this paper how to use direct modeling of heat transfer and circuital equations based on "packaged" simulation tools to produce a model suitable for the study of quench propagation in a system of magnetically coupled solenoids protected wi ...
The interconnections between Large Hadron Collider (LHC) main dipole and quadrupole magnets are made of soldered joints of two superconducting cables stabilized by a copper bus bar. The 2008 incident revealed the possible presence of defects in the interco ...
NbTi-based Rutherford cables are used in the coils of the Large Hadron Collider (LHC) magnets. These cables are designed to operate with currents up to 13 kA at temperatures of 1.9 K. Beam losses can locally heat the superconducting cables above the critic ...
The operation of the Large Hadron Collider calls for a thorough analysis of the thermo-electric behavior of the 13 kA superconducting bus-bars connecting its dipole and quadrupole main magnets. This presentation reports a synthesis of the work performed jo ...