Confinement regimes in simple magnetized toroidal plasmas
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, rho*, nu*, beta and q in the plasma core confinement region and same T-i/T-e and Z(eff). Th ...
The overall performance of a tokamak strongly depends on phenomena that take place in a thin region between the main plasma and the vessel wall, which is denoted as tokamak boundary. In fact, the formation of transport barriers in this region can significa ...
Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
Thermonuclear controlled fusion is a promising answer to the current energy and climate issues, providing a safe carbon-free source of energy which is virtually inexhaustible. In magnetic confinement thermonuclear fusion based on tokamak reactors, hydrogen ...
Understanding the turbulent dynamics in the outermost region of the tokamak is essential to predict and control the heat and particle loads to the vessel wall, a crucial problem for the entire fusion program. In this thesis, the problem is approached via t ...
Predictive modelling of plasma profiles is an essential part of ongoing research in tokamak plasmas, required for a successful realization of future fusion reactors. This thesis focuses on upgrading the RAPTOR code to extend the area of its applicability f ...
Controlled thermonuclear fusion is the main goal of plasma physics. At the Swiss Plasma Center, the Tokamak `a Configuration Variable (TCV) constitutes the main experiment on fusion research, where high temperature plasmas are confined by means of magneti ...
Microturbulence driven by plasma instabilities is in most cases the dominant cause of heat and particle loss from the core of magnetic confinement fusion devices and therefore presents a major challenge in achieving burning plasma conditions. The role of p ...
High external gas injection rates are foreseen for future devices to reduce divertor heat loads and this can influence pedestal stability. Fusion yield has been estimated to vary as strongly as T-e,ped(2) so an understanding of the underlying pedestal phys ...
Abstract The study of scrape-off layer (SOL) is a fundamental step in magnetic confinement fusion research. For example, SOL sets the boundary conditions for the tokamak core and it provides the energy flux toward the tokamak wall. With the goal of improvi ...