Publication

Correlation-based Joint Acquisition and Demosaicing of Visible and Near-Infrared Images

Abstract

Joint processing of visible (RGB) and near-infrared (NIR) images has recently found some appealing applications, which make joint capturing a pair of visible and NIR images an important problem. In this paper, we propose a new method to design color filter arrays (CFA) and demosaicing matrices for acquiring NIR and visible images using a single sensor. The proposed method modifies the optimum CFA algorithm proposed by Lu and Vetterli at 2009 by taking advantage of the NIR/visible correlation in the design process. Simulation results show that by applying the proposed method, the quality of demosaiced NIR and visible images is increased by about 1 dB in peak signal-to-noise ratio over the results of the optimum CFA algorithm. It is also shown that better visual quality can be obtained by using the proposed algorithm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.