Publication

Photothermal spectroscopy on-chip sensor for the measurement of a PMMA film using a silicon nitride micro-ring resonator and an external cavity quantum cascade laser

Simone Iadanza
2024
Journal paper
Abstract

Laser-based mid-infrared (mid-IR) photothermal spectroscopy (PTS) represents a selective, fast, and sensitive analytical technique. Recent developments in laser design permits the coverage of wider spectral regions in combination with higher power, enabling for qualitative reconstruction of broadband absorption features, typical of liquid or solid samples. In this work, we use an external cavity quantum cascade laser (EC-QCL) that emits in pulsed mode in the region between 5.7 and 6.4 mu m (1770-1560 cm-1), to measure the absorption spectrum of a thin film of polymethyl methacrylate (PMMA) spin-coated on top of a silicon nitride (Si3N4) micro-ring resonator (MRR). Being the PTS signal inversely proportional to the volume of interaction, in the classical probe-pump dual beam detection scheme, we exploit a Si3N4 transducer coated with PMMA, as a proof-of-principle for an on-chip photothermal sensor. By tuning the probe laser at the inflection point of one resonance, aiming for highest sensitivity, we align the mid-IR beam on top of the ring's area, in a transversal configuration. To maximize the amplitude of the photoinduced thermal change, we focus the mid-IR light on top of the ring using a Cassegrain reflector enabling for an optimal match between ring size and beam waist of the excitation source. We briefly describe the transducer design and fabrication process, present the experimental setup, and perform an analysis for optimal operational parameters. We comment on the obtained results showing that PTS allows for miniaturized robust sensors opening the path for on-line/in-line monitoring in several industrial processes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Infrared spectroscopy
Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms. It can be used to characterize new materials or identify and verify known and unknown samples. The method or technique of infrared spectroscopy is conducted with an instrument called an infrared spectrometer (or spectrophotometer) which produces an infrared spectrum.
Fourier-transform infrared spectroscopy
Fourier-transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range. This confers a significant advantage over a dispersive spectrometer, which measures intensity over a narrow range of wavelengths at a time. The term Fourier-transform infrared spectroscopy originates from the fact that a Fourier transform (a mathematical process) is required to convert the raw data into the actual spectrum.
Near-infrared spectroscopy
Near-infrared spectroscopy (NIRS) is a spectroscopic method that uses the near-infrared region of the electromagnetic spectrum (from 780 nm to 2500 nm). Typical applications include medical and physiological diagnostics and research including blood sugar, pulse oximetry, functional neuroimaging, sports medicine, elite sports training, ergonomics, rehabilitation, neonatal research, brain computer interface, urology (bladder contraction), and neurology (neurovascular coupling).
Show more
Related MOOCs (20)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.
The Radio Sky I: Science and Observations
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.