Publication

Deployment of a Pentagonal Hollow-Rope Tensegrity Module

Abstract

Tensegrity structures are spatial reticulated structures composed of cables and struts. Tensegrity systems are good candidates for adaptive and deployable structures and thus have applications in various engineering fields. A “hollow-rope” tensegrity system composed of tensegrity-ring modules has been demonstrated by the authors to be a viable system for a pedestrian bridge. This paper focuses on the deployment of pentagonal ring modules. A geometric study is performed to identify the deployment-path space allowing deployment without strut contact. Two actuation schemes are explored for deployment: the first scheme employs only actuated cables, while the second combines actuated cables with spring elements. In both schemes, continuous cables are used to reduce the number of actuators required. Finally, the structural response of the module during deployment is studied numerically using a modified dynamic relaxation algorithm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Valve actuator
A valve actuator is the mechanism for opening and closing a valve. Manually operated valves require someone in attendance to adjust them using a direct or geared mechanism attached to the valve stem. Power-operated actuators, using gas pressure, hydraulic pressure or electricity, allow a valve to be adjusted remotely, or allow rapid operation of large valves. Power-operated valve actuators may be the final elements of an automatic control loop which automatically regulates some flow, level or other process.
Actuator
An actuator is a component of a machine that is responsible for moving and controlling a mechanism or system, for example by opening a valve. In simple terms, it is a "mover". An actuator requires a control device (controlled by control signal) and a source of energy. The control signal is relatively low energy and may be electric voltage or current, pneumatic, or hydraulic fluid pressure, or even human power. Its main energy source may be an electric current, hydraulic pressure, or pneumatic pressure.
Linear actuator
A linear actuator is an actuator that creates motion in a straight line, in contrast to the circular motion of a conventional electric motor. Linear actuators are used in machine tools and industrial machinery, in computer peripherals such as disk drives and printers, in valves and dampers, and in many other places where linear motion is required. Hydraulic or pneumatic cylinders inherently produce linear motion. Many other mechanisms are used to generate linear motion from a rotating motor.
Show more
Related publications (37)

Additively manufactured stretchable zipping electrostatic actuators

Giulio Grasso

The use of soft and stretchable materials allows the development of adaptive robotic systems and human-machine interfaces that are more natural and comfortable to interact with. One of the application fields that benefits the most from these compliant mate ...
EPFL2024

3D Printed Motor-Sensory Module Prototype for Facial Rehabilitation

Jamie Paik, Amir Firouzeh

This work demonstrates the first 3D printed wearable motor-sensory module prototype designed for facial rehabilitation, focusing on facial paralysis. The novelty of the work lies in the fast fabrication of the first fully soft working prototype, including ...
MARY ANN LIEBERT, INC2021

Design of adaptive structures through energy minimization: extension to tensegrity

Gennaro Senatore, Yafeng Wang

This paper gives a new formulation to design adaptive structures through total energy optimization (TEO). This methodology enables the design of truss as well as tensegrity configurations that are equipped with linear actuators to counteract the effect of ...
2021
Show more
Related MOOCs (2)
Electrical Engineering I
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Electrical Engineering I
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.