Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than roden ...
Random networks of integrate-and-fire neurons with strong current-based synapse scan, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze ...
Firing rate variability at the single neuron level is characterized by long-memory processes and complex statistics over a wide range of time scales (from milliseconds up to several hours). Here, we focus on the contribution of non-stationary efficacy of t ...
Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learnin ...
An important feature of the nervous system is its ability to adapt to new stimuli. This adaptation allows for optimal encoding of the incoming information by dynamically changing the coding strategy based upon the incoming inputs to the neuron. At the leve ...
Cortical neurons continuously transform sets of incoming spike trains into output spike trains. This input-output transformation is referred to as single-neuron computation and constitutes one of the most fundamental process in the brain. A deep understand ...
Uniform random sparse network architectures are ubiquitous in computational neuroscience, but the implicit hypothesis that they are a good representation of real neuronal networks has been met with skepticism. Here we used two experimental data sets, a stu ...
Recent experimental data from the rodent cerebral cortex and olfactory bulb indicate that specific connectivity motifs are correlated with short-term dynamics of excitatory synaptic transmission. It was observed that neurons with short-term facilitating sy ...
The neocortex is the most distinctive feature of the mammalian brain and it is considered to be the substrate of high-order cognitive functions. The nature and the arrangement of the diverse neuronal elements constituting its multiple areas have received l ...
Neurons are spatially extended structures that receive and process inputs on their dendrites. It is generally accepted that neuronal computations arise from the active integration of synaptic inputs along a dendrite between the input location and the locat ...