**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Connection-type-specific biases make uniform random network models consistent with cortical recordings

Abstract

Uniform random sparse network architectures are ubiquitous in computational neuroscience, but the implicit hypothesis that they are a good representation of real neuronal networks has been met with skepticism. Here we used two experimental data sets, a study of triplet connectivity statistics and a data set measuring neuronal responses to channelrhodopsin stimuli, to evaluate the fidelity of thousands of model networks. Network architectures comprised three neuron types (excitatory, fast spiking, and nonfast spiking inhibitory) and were created from a set of rules that govern the statistics of the resulting connection types. In a high-dimensional parameter scan, we varied the degree distributions (i.e., how many cells each neuron connects with) and the synaptic weight correlations of synapses from or onto the same neuron. These variations converted initially uniform random and homogeneously connected networks, in which every neuron sent and received equal numbers of synapses with equal synaptic strength distributions, to highly heterogeneous networks in which the number of synapses per neuron, as well as average synaptic strength of synapses from or to a neuron were variable. By evaluating the impact of each variable on the network structure and dynamics, and their similarity to the experimental data, we could falsify the uniform random sparse connectivity hypothesis for 7 of 36 connectivity parameters, but we also confirmed the hypothesis in 8 cases. Twenty-one parameters had no substantial impact on the results of the test protocols we used.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (36)

Related MOOCs (32)

Related publications (115)

Neural coding

Neural coding (or neural representation) is a neuroscience field concerned with characterising the hypothetical relationship between the stimulus and the individual or ensemble neuronal responses and the relationship among the electrical activity of the neurons in the ensemble. Based on the theory that sensory and other information is represented in the brain by networks of neurons, it is thought that neurons can encode both digital and analog information.

Neural oscillation

Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons.

Normal distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution (and also its median and mode), while the parameter is its standard deviation. The variance of the distribution is . A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.

Olaf Blanke, Fosco Bernasconi, Nathan Quentin Faivre, Michael Eric Anthony Pereira, Shuo Wang

Subcortical brain structures such as the basal ganglia or the thalamus are involved in regulating motor and cognitive behavior. However, their contribution to perceptual consciousness is still unclear, due to the inherent difficulties of recording subcorti ...

2024Georg Fantner, Zahra Ayar Dulabi, Samuel Mendes Leitão

Time-lapse light microscopy combined with in vitro neuronal cultures has provided a significant contribution to the field of Developmental Neuroscience. The establishment of the neuronal polarity, i.e., formation of axons and dendrites, key structures resp ...

Tilo Schwalger, Valentin Marc Schmutz, Eva Löcherbach

Population equations for infinitely large networks of spiking neurons have a long tradition in theoret-ical neuroscience. In this work, we analyze a recent generalization of these equations to populations of finite size, which takes the form of a nonlinear ...