Publication

Input-to-state stabilization of feasible model predictive controllers for linear systems

Abstract

Research on sub-optimal Model Predictive Control (MPC) has led to a variety of optimization methods based on explicit or online approaches, or combinations thereof. Its foremost aim is to guarantee essential controller properties, i.e. recursive feasibility, stability, and robustness, at reduced and predictable computational cost, i.e. computation time and storage space. This paper shows how the input sequence of any (not necessarily stabilizing) sub-optimal controller and the shifted input sequence from the previous time step can be used in an optimal convex combination, which is easy to determine online, in order to guarantee input-to-state stability for the closed-loop system. The presented method is thus able to stabilize a wide range of existing sub-optimal MPC schemes that lack a formal stability guarantee, if they can be considered as a continuous map from the state space to the space of feasible input sequences.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.