Publication

A network of disdrometers to quantify the small-scale variability of the raindrop size distribution

Abstract

Insight into the spatial variability of the (rain) drop size distribution (DSD), and hence rainfall, is of primary importance for various environmental applications like cloud/precipitation microphysical processes, numerical weather modeling, and estimation of rainfall using remote sensing techniques. In order to quantify the small-scale variability of the DSD, a network of 16 optical disdrometers has been designed and deployed over a typical operational weather radar pixel (about 1 x 1 km(2)) in Lausanne, Switzerland. This network is fully autonomous in terms of power supply as well as data transmission and storage. The combination of General Radio Packet Service and radio communication allows a real-time access to the DSD measurements. The network is sampling at a temporal resolution of 30 s. A period representative of frontal precipitation is analyzed to illustrate the measurement capabilities of the network. The spatial variability is quantified by the coefficient of variation of the total concentration of drops, the mass-weighted diameter, and the rain rate between the 16 stations of the network. The sampling uncertainty associated with disdrometer measurements is taken into account, and the analysis of a 1.5 month rainy period shows a significant variability of these quantities, which cannot be explained by the sampling uncertainty alone, even at such a small scale.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.