Thermally Enhanced Cable Insulation for the Nb-Ti High Luminosity LHC Inner Triplet Model
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In view of the development of cables for next-generation fusion reactors, research activities are carried out on all HTS materials available from industrial production. Preliminary design of a react and wind cable using Bi-2212 wires is carried out, inspir ...
In the framework of high luminosity upgrade of Large Hadron Collider at CERN, superconducting links are being developed. MgB2 wire is a candidate conductor for use in high- current cables. Mechanical properties of this material are of key importance for th ...
The knowledge of the thermal strain distribution of the Nb3Sn filaments in a cable in conduit conductor (CICC) cross section is a key parameter in understanding the cable performance evolution when it undergoes electromagnetic (EM) cyclic loading. A CICC i ...
The operation of Nb–Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Co ...
In this letter, we propose a formula for evaluating the transfer impedance of two-layer braided cable shields. The proposed formula results from the combination of the model proposed by Vance for the evaluation of the equivalent transfer impedance of a two ...
Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A ...
NbTi-based Rutherford cables are used in the coils of the Large Hadron Collider (LHC) magnets. These cables are designed to operate with currents up to 13 kA at temperatures of 1.9 K. Beam losses can locally heat the superconducting cables above the critic ...
We demonstrate in this paper how to use direct modeling of heat transfer and circuital equations based on "packaged" simulation tools to produce a model suitable for the study of quench propagation in a system of magnetically coupled solenoids protected wi ...
One of the biggest goals for the international thermonuclear experimental reactor (ITER) is the steady state operation. For this reason all its coils will be superconducting and Nb3Sn material is used for both the toroidal field (TF) and the central soleno ...
We demonstrate in this paper how to use direct modeling of heat transfer and circuital equations based on "packaged" simulation tools to produce a model suitable for the study of quench propagation in a system of magnetically coupled solenoids protected wi ...