Publication

Prototype of a thermally driven heat pump based on integrated Organic Rankine Cycles (ORC)

Abstract

The concept studied in this work is a low power ORC-ORC heat pump system (providing about 20 kW heat at the condenser) and that is composed of an ORC power cycle driving a reversed ORC heat pump cycle, both cycles using the same fluid. The centrifugal compressor and the radial in-flow turbine are directly coupled on the same shaft rotating on self-acting refrigerant vapor bearings. The system has the advantage of being oil-free, fully hermetic and with low maintenance costs. The paper presents the development of an ORC-ORC prototype, with HFC-134a as working fluid. The main critical parts of the system are the compressor-turbine unit, the supercritical evaporator and the pump. The selected type of heat exchanger for the supercritical evaporation is the double tube coil (DTC). A first experimental setup has been built to test the pump and the supercritical evaporator. A comparison between the results obtained with an in-house supercritical evaporator simulation program and measurements made on the DTC is presented. The design steps of the compressor-turbine are briefly presented. The compressor-turbine unit has been balanced and tested, with air, at speeds up to 140'000 rpm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.