The challenge of T1 contrast agents for high-magnetic field MRI
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Magnetic resonance imaging is one of the most efficient diagnostic modalities in clinical radiology and biomedical research. To enhance image contrast, paramagnetic complexes, mainly Gd3+ chelates, are used. Today, around one third of all medical MR images ...
We report that the electron spin-relaxation time T1 in a GaAs quantum dot with a spin-1/2 ground state has a 180° periodicity in the orientation of the in-plane magnetic field. This periodicity has been predicted for circular dots as being due to the inter ...
Magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are widely used in the field of brain development and perinatal brain injury. Due to technical progress the magnetic field strength (B0) of MR systems has continuously increased, fa ...
Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized ...
Magnetic resonance images acquired at the highest strength of the main magnetic field B0 are of interest since they highly benefit from an increased signal to noise ratio. At ultra high field strengths (B0 > 7 Tesla) images with more contrast and higher re ...
An essential feature of magnetic resonance (MR) probes for magnetic resonance imaging and spectroscopy is the ability to generate uniform B-1(+) excitation in a volume of interest. When the magnetic field strength is increased, leading to an increase in re ...
Magnetic resonance imaging (MRI) technique is at the forefront of biomedical and clinical imaging. Its superb spatial resolution, noninvasive nature and use of benign radiation outweigh its intrinsic low detection sensitivity. However paramagnetic relaxers ...
The tremendous polarization enhancement afforded by dissolution dynamic nuclear polarization (DNP) can be taken advantage of to perform preclinical in vivo molecular and metabolic imaging. Following the injection of molecules that are hyperpolarized via di ...
PURPOSE: At high magnetic field strengths (B0 >/= 3 T), the shorter radiofrequency wavelength produces an inhomogeneous distribution of the transmit magnetic field. This can lead to variable contrast across the brain which is particularly pronounced in T2 ...
Since the introduction 10 years ago of the dissolution method, Dynamic Nuclear Polarization (DNP) became a widely applied and powerful technique to enhance nuclear magnetic resonance (NMR) signals of low naturally abundant, insensitive nuclear spins for an ...