SirtuinSirtuins are a family of signaling proteins involved in metabolic regulation. They are ancient in animal evolution and appear to possess a highly conserved structure throughout all kingdoms of life. Chemically, sirtuins are a class of proteins that possess either mono-ADP-ribosyltransferase or deacylase activity, including deacetylase, desuccinylase, demalonylase, demyristoylase and depalmitoylase activity. The name Sir2 comes from the yeast gene 'silent mating-type information regulation 2', the gene responsible for cellular regulation in yeast.
DNA repairDNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes.
Base excision repairBase excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from the genome. The related nucleotide excision repair pathway repairs bulky helix-distorting lesions. BER is important for removing damaged bases that could otherwise cause mutations by mispairing or lead to breaks in DNA during replication.
Nucleotide excision repairNucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals (e.g. intercalating agents), radiation and other mutagens. Three excision repair pathways exist to repair single stranded DNA damage: Nucleotide excision repair (NER), base excision repair (BER), and DNA mismatch repair (MMR). While the BER pathway can recognize specific non-bulky lesions in DNA, it can correct only damaged bases that are removed by specific glycosylases.
DNA polymeraseA DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones. These enzymes catalyze the chemical reaction deoxynucleoside triphosphate + DNAn pyrophosphate + DNAn+1.
LongevityLongevity may refer to especially long-lived members of a population, whereas life expectancy is defined statistically as the average number of years remaining at a given age. For example, a population's life expectancy at birth is the same as the average age at death for all people born in the same year (in the case of cohorts). Longevity studies may involve putative methods to extend life. Longevity has been a topic not only for the scientific community but also for writers of travel, science fiction, and utopian novels.
Poly (ADP-ribose) polymerasePoly (ADP-ribose) polymerase (PARP) is a family of proteins involved in a number of cellular processes such as DNA repair, genomic stability, and programmed cell death. The PARP family comprises 17 members (10 putative). They vary greatly in structure and function within the cell. PARP1, PARP2, VPARP (PARP4), Tankyrase-1 and -2 (PARP-5a or TNKS, and PARP-5b or TNKS2) have a confirmed PARP activity. Others include PARP3, , TIPARP (or "PARP7"), PARP8, , PARP10, , PARP12, , , and PARP16.
PARP inhibitorPARP inhibitors are a group of pharmacological inhibitors of the enzyme poly ADP ribose polymerase (PARP). They are developed for multiple indications, including the treatment of . Several forms of cancer are more dependent on PARP than regular cells, making PARP (PARP1, PARP2 etc) an attractive target for cancer therapy. PARP inhibitors appear to improve progression-free survival in women with recurrent platinum-sensitive ovarian cancer, as evidenced mainly by olaparib added to conventional treatment.
Philadelphia chromosomeThe Philadelphia chromosome or Philadelphia translocation (Ph) is a specific genetic abnormality in chromosome 22 of leukemia cancer cells (particularly chronic myeloid leukemia (CML) cells). This chromosome is defective and unusually short because of reciprocal translocation, t(9;22)(q34;q11), of genetic material between chromosome 9 and chromosome 22, and contains a fusion gene called BCR-ABL1.
Key (music)In music theory, the key of a piece is the group of pitches, or scale, that forms the basis of a musical composition in Western classical music, art music, and pop music. Tonality (from "Tonic") or key: Music which uses the notes of a particular scale is said to be "in the key of" that scale or in the tonality of that scale. A particular key features a tonic note and its corresponding chords, also called a tonic or tonic chord, which provides a subjective sense of arrival and rest, and also has a unique relationship to the other pitches of the same key, their corresponding chords, and pitches and chords outside the key.