Publication

Inhibitory Plasticity Balances Excitation and Inhibition in Sensory Pathways and Memory Networks

Abstract

Cortical neurons receive balanced excitatory and inhibitory synaptic currents. Such a balance could be established and maintained in an experience-dependent manner by synaptic plasticity at inhibitory synapses. We show that this mechanism provides an explanation for the sparse firing patterns observed in response to natural stimuli and fits well with a recently observed interaction of excitatory and inhibitory receptive field plasticity. The introduction of inhibitory plasticity in suitable recurrent networks provides a homeostatic mechanism that leads to asynchronous irregular network states. Further, it can accommodate synaptic memories with activity patterns that become indiscernible from the background state, but can be reactivated by external stimuli. Our results suggest an essential role of inhibitory plasticity in the formation and maintenance of functional cortical circuitry.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Chemical synapse
Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body. At a chemical synapse, one neuron releases neurotransmitter molecules into a small space (the synaptic cleft) that is adjacent to another neuron.
Homeostatic plasticity
In neuroscience, homeostatic plasticity refers to the capacity of neurons to regulate their own excitability relative to network activity. The term homeostatic plasticity derives from two opposing concepts: 'homeostatic' (a product of the Greek words for 'same' and 'state' or 'condition') and plasticity (or 'change'), thus homeostatic plasticity means "staying the same through change". Homeostatic synaptic plasticity is a means of maintaining the synaptic basis for learning, respiration, and locomotion, in contrast to the Hebbian plasticity associated with learning and memory.
Synaptic plasticity
In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuits in the brain, synaptic plasticity is one of the important neurochemical foundations of learning and memory (see Hebbian theory). Plastic change often results from the alteration of the number of neurotransmitter receptors located on a synapse.
Show more
Related publications (41)

Principles of Network Plasticity in Neocortical Microcircuits

András Ecker

Synaptic plasticity underlies our ability to learn and adapt to the constantly changing environment. The phenomenon of synapses changing their efficacy in an activity-dependent manner is often studied in small groups of neurons in vitro or indirectly throu ...
EPFL2023

Long-term plasticity induces sparse and specific synaptic changes in a biophysically detailed cortical model

Eilif Benjamin Muller, Michael Reimann, James Gonzalo King, Marwan Muhammad Ahmed Abdellah, Pramod Shivaji Kumbhar, András Ecker, Sirio Bolaños Puchet, James Bryden Isbister, Daniela Egas Santander, Jorge Blanco Alonso, Giuseppe Chindemi, Ioannis Magkanaris

Synaptic plasticity underlies the brain’s ability to learn and adapt. This process is often studied in small groups of neurons in vitro or indirectly through its effects on behavior in vivo. Due to the limitations of available experimental techniques, inve ...
2023

Pathway and directional specificity of Hebbian plasticity in the cortical visual motion processing network

Friedhelm Christoph Hummel, Estelle Emeline Raffin, Michele Bevilacqua

Cortico-cortical paired associative stimulation (ccPAS), which repeatedly pairs single-pulse transcranial magnetic stimulation (TMS) over two distant brain regions, is thought to modulate synaptic plasticity. We explored its spatial selectivity (pathway an ...
2023
Show more
Related MOOCs (27)
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.